Eveasum
WURZBURG
Instructions and Usage of PAVO

Master Traineeship of
Maximilian Konig

At the Department of Computer Science
Chair for Computer Science |l
Software Engineering

AV

Advisor: Dipl. Inf. Jirgen Walter

Duration: 1. September 2016 — 28. February 2017

Julius-Maximilians-Universitat Wirzburg www.uni-wuerzburg.de

Contents

1 Introduction|

2 Approach
2.1 Goalsl e e

2.2 TInterface to Descartes Query Language|

3 Implementation|

3.1 Graphical User Interface
3.2 Chart Types| e
3.2.1 Confidence Intervals
3.2.2 Bar Charts
3.23 Line Charts
3.2.4 Difference Chart]
3.2.5 Scatter Plotl.
B3.2.6 Box Plot|
3.2.7 Bubble Chart|
328 Heat Map|
3.29 Histogram|.
3.2.10 Pie Chart!
3.3 Result Type|.
3.3.1 Abtract Quantitative Result|.
3.3.2 Result Container]
B3.33 SeriesResultl
334 String Result| Lo oo
3.3.5 Value Resultl
3.4 Diagram Visualization| 0L
3.4.1 Graphics Engine] oo
3.4.2 Diagram Visualizer|. oL
3.5 Diagram Export]

Bibliography

iii

1. Introduction

Performance is of particular relevance to software system design, operation, and evolution
because it has a major impact on key business indicators. That is why it is interesting
to create tools to simulate computer systems and check for example their workload with
different applications. Beside simulation one needs to compare such systems or models to
each other. The visualization of results is very important to recognize problems. Common
tools for performance predictions require a large amount of experience with modeling for-
malism.

The idea of Declarative Performance Engineering defines that using a system shall
be as easy as possible. The goal of is that the user just has to ask what he wants
and the system automates the how and returns the result.

In applications, just as Queueing Petri net Modeling Environment (QPME), which analyze
computing systems, is a visualization for the result one get from his request existing. These
result representations are only fitted for the appropriate software package. But all these vi-
sualizations do the same thing. So why not implement a generic library called Performance
Analyse VisualizatiOn library, which supports a visualization, that can be used
for multiple tools. At the chair of software engineering at the University in Wiirzburg a
language to direct queries to models was developed. That language is Descartes Query
Language (DQL]). This approach to performance predictions shall automate the process
of extracting informations about these computer systems. It should minimize the manual
work done by the analyst and support him with software. The problem with the represen-
tation of results is that these are difficult to understand, cause they are shown in complex
log files. at least filters them and puts the most important ones, because the user
asked for, in a table. Although the result visualization in a table is better than the one
in files, it is not optimal. For human beings a graphical representation is much easier to
understand. Also a diagram may deliver more information than a simple table. Even a
measurement based analysis or a model based ones need the same types of visualization.
To support such a visualization the necessary independent library was implemented in
2016. According to such a visualization software many questions need to be answered. For
instance which diagram types shall be supported, how different diagrams can be compared
the easiest way or should one be able to switch between different types. So we developed a
tool named an independent and easy to use library for the graphic representation
for the results of That work was based on the idea of to make programs as
easy as possible. We use the language for the evaluation and integrate the developed
library to the current engine. That visualization tool is easy to extend and to integrate
into different tools.

2. Approach

In this chapter we take a closer look to the goals and the approach for [PAVO| how to
reach them. In Section one can see the major features which provides. After
that we show how easy [PAVOI can be included into an existing software package. Here we

take as an example.

2.1 Goals

The main goal was to develop a software to visualize the results of a performance analysis
program, for example according to the query with an automatically chosen dia-
gram type. The interface will help the user to easier work with his models in the way
of Declarative Performance Engineering. We also added the support of live diagrams for
time changing values. The final software shall be used as a library which can be included

easily into every other tool, if the return and data transport types as described in Section
are available.

It shall be possible for the user to visualize scenarios online and offline. In addition
merging of different diagrams and swapping the diagram type should also be supported.
By supporting this type of merge it will be much easier to compare different queries and
extracting some information out of a diagram, than just using numbers in a table. The
Subgoals to reach while this thesis are mentioned and explained in the following:

e Goal 1: Automated Diagram Type Choice
One main feature of the software is the automated choice of the matching diagram
according to the query asked. For example if one got a sample of about 10 values,
it is much better to see them in a line chart than using a box plot. In contrast, by
receiving more than 100 values we better extract the information out of a box plot
than out of a line chart with too many dots in it.

e Goal 2: Support of Manual Diagram Switch
In addition the user shall be able to display the values in a diagram type if he wants.
This can be useful if he wants to see the received information in another way.

e Goal 3: Support Diagram Merging
Another feature is to merge different kinds of charts into one single diagram. This
helps to compare different analysis results.

4 2. Approach

e Goal 4: Support Offline and Online Scenarios
One special feature our software shall offer are on one hand offline scenarios which
show one single moment in time. On the other hand online plotting is possible as
well to visualize an interval of time.

e Goal 5: Support for Confidence Intervals
Some queries asked in return confidence interval for the result values. The
diagrams created by the visualization of this thesis shall support such intervals and
show them in the charts as error bars.

e Goal 6: Export Feature
The software shall offer the function to export the shown diagram as an image file
and save it to the current file system. Also the size of this image shall be possible to
choose by the user.

e Goal 7: Non-functional Aims

The non-functional aims to reach are integrating the software, which creates the
diagrams in the existing tool chain of at the Chair of software engineering in
Wiirzburg. According to this integration the code and the software itself has to be
kept as extensible as possible, so maybe a live-system or even the support for new
diagrams because of new queries, that can be done, can be added. Another point
for the extendibility is that in future work the result visualization can be integrated
into a complete graphical user interface with the model and the appropriate request
and the diagram and maybe some for information as output.

Now we will take a closer look to the single Subgoals. According to the Automated Dia-
gram Choice (Goal 1) it must be said that for the current state of the thesis there are three
major types of diagrams to support: line charts, box plots and bar charts. Additionally
shall be able to display decimal results and string results as text and integrate the
decimal ones into line charts.

By taking a closer look at and the queries that can be made, it is easy to see
that there are multiple scenarios we need to cover with diagrams. In the following it is
explained which kind of diagram will be used to show the result of a certain query.

The first type of queries that can be asked for are those one getting samples of different
values for a single moment in the network. For example a query for workload of different
entities. These can be shown easily in a bar diagram, so it is possible to compare these
entities. Box plot will not be chosen as default type, because it is a very special type
of diagram. The standard types that are shown in the beginning are the line chart for
continuous results and the bar chart for discrete ones. Secondly, the most common queries
are time based (Goal 4). Here the user wants to know how a parameter of a single entity
changes over time. For example the workload of entity X for some time. To show this
best, the implemented Graphical User Interface will use simple line charts. The
time will be shown at the horizontal axis and the parameter asked for, e.g. the workload
is shown vertically. This offers the user to best compare the parameter values over time.
The last type we want to include in the is optional for this thesis and can also be
seen as future work to do. To see the performance of a network and its changes over time
immediately, the feature of a diagram that is updating itself live, while the network model
is created. If the user switches a parameter in the model he shall see the changes instantly
in the diagram. So the live-system will just be an extension for the secondly named time-
based queries result visualization. The diagram switches (Goal 2) shall be possible with
the usage of buttons and for example combo boxes. Here the user can decide whether he
wants the standard line or bar chart, a box plot, a line chart with confidence intervals as
error bars or even a bar chart with error bars.

2.2. Interface to Descartes Query Language 5

DQL: $j DQL: il
Diagram Component Connector —@—

w/@/

Model-specific 2]
external Toolchain

&

DAL E E DQL: E

. DQL:
Language & Editor © Query Execution Engine —(O—— Connector Registry

Figure 2.1: Inclusion of the Diagram Component into the Existing Toolchain of

The diagram merging feature (Goal 3) should work as follows. The first result received
decides which kind of diagram is shown. After that the rest of the results are merged
and transformed into this diagram. For each resource received a single diagram will be
created. The functionality of exporting the charts will be focused on the export of portable
network graphics (png) files. If the license of the chosen chart drawing library allows to
export vector graphics this would be the optimal case.

2.2 Interface to Descartes Query Language

To communicate with requests our program needs to receive the data from them.
There are multiple options to do that, for example JSON, XML or just by an object
created. For example we need to redirect the information about the kind of result (to
choose the right diagram type) or the values for the diagrams. There are two options to
regard intently. The first one is XML, as used by Here all necessary information
can be described in the file which is read by the chart creation program. Also the title
of the diagram shall be given by an XML file. The second alternative is the passing of
objects through the toolchain. In the current results of a query are saved as objects
of the class EntityMapping. Just because the current software provides this class it is
the most easiest way to transport our data. The library will be implemented that way,
that one needs to transfer his own data into the result type, to make use of it.
For we transformed the EntityMapping object. After taking a look at the difficulty
of the implementation of the different data transport possibilities, we decided to choose
the object creating path in cooperation with the extension of EntityMapping. All in all
the created library can be used for every kind of program later on, which returns
objects of this class. If for future work any more information is necessary, it is also simple
to extend EntityMapping.

According to the point, where the diagram creation component shall be included into the
existing toolchain of to evaluate the library, it must be said, that it is most common,
to connect it directly to the DQL} Query Execution Engine” (Figure 4), which offers the
result as EntityMapping. Another reason for this connection point is that we want to
create that works for every version, for every connector and also with extern
software. The opportunity to include the program as a connector is not appropriate to the
named goal.

In addition the software shall not be developed as a component which can only be used
with The visualization will be coded in a separate package in the repository. It is
called tools.descartesPAVOL So the visualization shall be able to be used with any other
software, if the programmer transformed his result type as we do with the EntityMapping

of DQLJ

3. Implementation

In the following we present the implementation of the library, especially the used
software pattern. According to that, we decided on a Model-View Controller pattern in
combination with a Decorator pattern for the changes of the graphical user interface, de-
pending on the current diagram type. For the export feature, we decided not to include
it right into the package, because of different licenses. Here an extension point was
implemented. This one is used by four different export controllers at the moment. Even
more export types can be added in the future.

3.1 Graphical User Interface

The was splitted into the main overlay and the export frame. The export frame is
kept as simple as possible, with a combobox to choose your type of export and if nessecary
the dimensions of the created image. Furthermore there is the finish button to complete
the export procedure and a cancel button to stop it.

The main is structured as follows: In the top there is a tab bar, separating the
diagrams via metrics. Beneath that there is the String of the current query shown. Mov-
ing downwards one can find the diagram including its legend and at the bottom of the
frame there are the button controls for the diagram.These controls include a button and a
combo box for the diagram switch, one to export a chart and even more buttons, combo
boxes and radio buttons depending on the actual chart.

3.2 Chart Types

In this section all different diagrams types, supported by are explained in detail.
On the one hand side the result types supported and on the other hand side the controls
shown by each kind of chart. The standard type, which can be used every time is the bar
chart. In figure one can see the decision tree of It shows which diagram is
supported in which case.

3.2.1 Confidence Intervals

One additional feature we added to[PAVO] are the confidence intervals that can be shown.
Therefore we added the confidence intervals to the EntityMapping of the result type of

8 3. Implementation

DML. Also for the types of bar chart and line chart there is an active additional radio
button, which causes the diagram to switch to the same type but adds these intervals to
the plot.

3.2.2 Bar Charts

As already mentioned the main type of diagram is bar chart, which supports all different
result types possible. The series are shown in multiple colors. As a special feature for bar
charts the user can enable the minimum, maximum and mean value of each series to be
shown in the plot as horizontal lines.

3.2.3 Line Charts

Another standard type of chart is the simple line chart. It also supports the confidence
intervals and the radio buttons for minimum, maximum and mean. So there is no big
difference compared to a bar chart, except the fact, that a line chart can only be used, if
the delivered data series are all marked as continuous and not a single one for the current
metric as discrete.

3.2.4 Difference Chart

To extend the line chart type we added Difference Chart to This kind of diagram
shall show the user the difference between two series. It is enabled, if the metric has exactly
two series. It is not nessecary that both of them are continuous. In the plot the two series
are shown as line charts and the space between the two lines is marked in another color.
Here no additional features are implemented, neither the minimum, maximum and mean,
nor the confidence intervals.

3.2.5 Scatter Plot

The next standard plot is the Scatter Plot, which is also supported by all different kinds
of results. The points in the plot are shown as different geometric forms, depending to the
series they belong to, they belong to. Scatter plot can be used to see the spreading around
a single point, e.g. the center of both chart axis. As Difference Chart does not support
any more features than displaying the values, so does Scatter Plot.

3.2.6 Box Plot

The last simple type of diagram supported by is the box plot. Here the program
takes all y values of each series together and puts them into a box plot. Box plot is only
enabled when there is more than one series of the actual metric, otherwise there would be
no additional information gained by using this kind of diagram. As the last few diagram
types do not support additional features, box plot also has no extras.

3.2.7 Bubble Chart

One more complex type of diagram supported by is Bubble Chart. It is a three
dimensional representation of values. It was designed for showing different degrees of free-
dom for the results in a diagram. Bubble Chart can only use value results. These are taken
as values for the third (the z-axis). The bigger the value the greater the size of the corre-
sponding bubble. The other two axis are filled with the DoF-(Degree of Freedom)Values.
As one might follow every value result received by e.g. needs to contain the exact
same DoF’s. If that is true Bubble Chart is enabled. As additional controls two combo
boxes for the selection of the DoF’s for each axis were added. Also another Spinner is
shown. Here the user can choose a parameter to enlarge his bubbles, if the values are too
low or to big to be shown nice.

3.3. Result Type 9

3.2.8 Heat Map

Heat Map is a type of representation pretty similar to Bubble Chart. The only difference
is that Heat Maps can only be used for continuous values. So PAVO pnly enables Heat
Maps if Bubble Chart is already supported and all values of the different DoF’s only differ
by a maximum of 1.0. The additional controls are the exact same, only the Spinner is not
existent in the Heat Map button panel.

3.2.9 Histogram

The graphic rendition of a histogram is also implemented in Here the frequency
of the x values is shown. As default all values are put into 5 different bins. The user is
able to enlarge the number of bins by using the control feature of the histogram part. As
a maximum the number of x values is used. If the result received has "Frequency” as y
axis description the y values are used as frequency for the corresponding x value.

3.2.10 Pie Chart

The last diagram type actually supported by is a Pie Chart. It is only enabled, if
the values of each series can be added to 1 or 100. Another way is by getting multiple
value results, which can also be added to 1 or 100.

3.3 Result Type

To make as independent as possible we designed a new result model for it. In order
to use one just needs to convert his result into the result model. This result
model consists out of 5 Java classes. One interface, one container for multiple results,
which shall be shown in one tab panel in and three different types of single results.
In the Java code the classes are named with the Postfix "TPAVO? as the simple name is for
example already used in Descartes Modeling Language

3.3.1 Abtract Quantitative Result

The interface we designed was kept as simple as possible. Every result consists out of a
queryable element, a metric and a statistic type as a name. Furthermore there is one string
for each axis as description and an additional description, which can be used to name the
series according to something for example degrees of freedom, which are not saved in the
other variables. Additionally to that there is the original location of the result element,
to support auto update for the plots. This feature also needs the last variable dots shown
for intern managing.

3.3.2 Result Container

The result container is a class with a list of different results. As all these results need to be
shown in a single tab in the a new variable for the axis labels are needed. Furthermore
a parameter for the metric is implemented. This name is used to label the tab in the tab
bar. More informations are not needed in the container.

3.3.3 Series Result

The class series result exist to represent a complete series in the result type. These
series consists out of a list of Points, which have an x and y value and a confidence interval.
Furthermore parameters if the series is continuous or discrete and one for the name are
introduced.

10

3. Implementation

SeriesResult]

Histogram,
BoxPlot,
BarChart,

ScatterPlot

every series

Value Result

Bar Chart,
Scatter Plot,
Line Chart

String Result

No diagram

in continous
all results have
the same 2
e DoF‘s
no yes
Bubble a
A 4
amount of
two series
ves the DoF values
differby a no
yes .
maximum of 1.0
DFaaT no ves
no
[REEMYETY)
A\ 4
only one
series which
can be y
added to all results can
100 or 1.0 be added to 100
or1.0
yes
No diagram

contains contains
more value more series
results results

No diagram

Figure 3.1: Decision diagram for the choice of diagram type

10

3.4. Diagram Visualization 11

3.3.4 String Result

String values only have a string value as parameter which is later shown beneath the query
string. No more values are needed.

3.3.5 Value Result

The value results are very similar to the string ones. Here also only one parameter for the
integer value is implemented and nothing more. Results consisting out of a single value
are shown as horizontal line in the plot.

3.4 Diagram Visualization

The main diagram visualization divides into two classes. The Graphics Engine, which
manages the different tabs and the separation of the results given, and the Visualization
Controller, which manges one single tab. The engine generates one controller for each tab
that shall be created. At the current state of the library one tab for each metric is used.
For more information about the classes, have a closer look to the next two subsections.

3.4.1 Graphics Engine

As already mentioned the Graphics Engine is the main class to start for your soft-
ware. Create an object with a title and a list of EntityMappings. For the usage with
other result types one needs to write a new constructor. This one shall work as the given
two. With the only difference, that one also needs another method or class to convert this
type into the type. For EntityMapping this is done in the TransformEntityMap-
pingToResult class in the tools.descartes[PAVOlcontroller package. In addition to that
another method is required to work with the tab separation one wants for its usage. Here
you need to split your results into more result containers. (See Section . After that
you create one VisualizationController (Section for each and include that tab into
the tabbed pane. An example for that is done in the interpreteEntityMapping method.

3.4.2 Diagram Visualizer

The Visualizer is the most complex class of It consists out of many different meth-
ods. Most of them use reflection to get the methods out of the current shown diagram type.
To include another diagram type just implement the class and add it to the AddDiagram-
Classes list. All other methods are just for intern management and not nessecary
for the integration of into another software project. To get more information about
them have a look to the JavaDoc of VisualizationController.java.

3.5 Diagram Export

If the user clicks on the export button the class ExportDialogFrame becomes active. It
opens up a new frame with three parts. Two buttons to finish and cancel the progress.
In addition to them there is a combo box which contains all export extensions currently
used. Here the user is able to select his type of exported file. If this one is a picture, text
boxes for the selection of the size show up. Here the user can insert his width and the
height is adjusted automatically. The export of the diagrams shown in the
is implemented as an Extension Point to the package. All new extensions need to
implement the Interface called IExportController, which is located in the package.
This interface provides several methods. The export method, to save the current shown
JFreeChart to the matching file, which is chosen before by the Export Dialog of

11

12 3. Implementation

One method called updatePathToSuffix, adds the corresponding file suffix to the chosen
file, if it is not added by user. Two more methods are left: One for the String, shown
in the combo box of the dialog, to choose the kind of export controller and another one
which returns the identifier of this controller. In all cases these two methods shall return
the same String.

In separated packages there are four different exporters implemented. One for comma
separated values, one for semicolon separated values, one for export as png file and a
last one for the vector graphics export. They are located in other packages in the
repository, as especially the vector graphics export and the pdf export use other libraries
than the chosen JFreeChart. These are licensed under different licenses, which need to be
accepted, if one wants to use with all its exports. If one wants to create another
exporter for some kind of file type, it is only nessecary to create a new extension to the
extension point and activate it.

12

4. Summary

Now we will shortly summarize the work done with PAVO in 2016. We designed an
independent library, mainly matching to to visualize results given in charts.
already provides many different diagram types, all with their own logic, if they can be used.
contains an own result type, so other software packages only need to convert their
results to that one to make work. As normally created diagrams are not only used
for personal interests, we added an export feature to create several files, which can later be
included into dissertations. PAVO was kept as simple as possible to extend by using the
software pattern of Model-View-Controller and the Decorator pattern for the At the
current moment is included into the respository, which can be found under
https://se3.informatik.uni-wuerzburg.de/descartes/dql.git. For the future can be
extended with even more diagram types and shall be included into even more software
packages, to simplify them in the idea of Declarative Performance Engineering.

11

5. Acronyms

DQL Descartes Query Language

DML Descartes Modeling Language

DPE Declarative Performance Engineering
QPME Queueing Petri net Modeling Environment
GUI Graphical User Interface

PAVO Performance Analyse VisualizatiOn

13

	Contents
	1 Introduction
	2 Approach
	2.1 Goals
	2.2 Interface to Descartes Query Language

	3 Implementation
	3.1 Graphical User Interface
	3.2 Chart Types
	3.2.1 Confidence Intervals
	3.2.2 Bar Charts
	3.2.3 Line Charts
	3.2.4 Difference Chart
	3.2.5 Scatter Plot
	3.2.6 Box Plot
	3.2.7 Bubble Chart
	3.2.8 Heat Map
	3.2.9 Histogram
	3.2.10 Pie Chart

	3.3 Result Type
	3.3.1 Abtract Quantitative Result
	3.3.2 Result Container
	3.3.3 Series Result
	3.3.4 String Result
	3.3.5 Value Result

	3.4 Diagram Visualization
	3.4.1 Graphics Engine
	3.4.2 Diagram Visualizer

	3.5 Diagram Export

	4 Summary
	Bibliography
	5 Acronyms

