Analysis of a Multi-Class Service Tandem Queueing Model with Feedback Attended by a Single Server

Tsuyoshi KATAYAMA

Department of Electronics and Information Engineering
Faculty of Engineering, Toyama Prefectural University
Toyama 939-03, Japan

Abstract This paper analyzes a single-server multi-class service tandem queue with feedback, which appears in call processing for multi-class calls (tasks) in telecommunication systems. Explicit expressions are derived for joint queue-length generating functions and the mean total sojourn time spent by a customer (task) in the tandem queueing model. Using the extended Kleinrock's conservation law, an optimal task scheduling strategy (called as the Klh rule) is obtained to minimize a cost function defined by the individual mean total sojourn times of multi-class tasks.

1. Introduction

The Integrated Services Digital Network (ISDN) have been extensively developed and introduced. It enables efficient transmission of various traffic demands. However, owing to multiple grades of service requirements, it needs essentially an optimal call processing for multi-class calls in the network nodes. We consider priority assignment problems on the call processing with multi-class tasks in electronic switching systems by using a special two-stage tandem queueing model with parallel queues for multi-class tasks in the second stage attended by a single server.

There have been analytical studies of tandem queues with cyclic-service. Nair[10] and Netto[11] considered a two-stage tandem queue with Poisson arrivals and general service times. Katayama[7] studied multi-stage tandem queues with several switching rules, e.g., exhaustive, gated and limited services. The switching rules correspond to the task-scheduling for call processing in electronic switching systems. Various switching rules of single-server queueing network systems have been studied in several literature, where these are different from this paper in decision epochs, i.e., switching epochs, (See Section 2)[4],[5],[9].

2. Single-Server Tandem Queueing Model

A queueing system considered below is a single-server two-stage tandem queue with feedback as shown in Fig. 1. The first stage has a common queue, \(Q_0 \), and the second stage has \(N \) parallel queues, \(Q_1, Q_2, \ldots, Q_N \) for multi-class customers. Each queue, \(Q_n, \) has a service counter, \(S_n, n = 0, 1, 2, \ldots, N. \) Customers of type-\(n \) (or class-\(n \)) arrive at the common queue \(Q_0 \) according to a Poisson process with rate \(\lambda_n, n = 1, 2, \ldots, N. \) After receiving the service in \(Q_0, \) each customer either joins the end of a waiting line in \(Q_0, \) again with probability \(p, \) or departs from the first stage with probability \(q=1-p. \) Type-\(n \) customers who have completed service in the first stage go immediately to \(Q_n, \) to receive the second service in \(S_n, n = 1, 2, \ldots, N. \) All the queues are served by a single server according to the exhaustive service
Thus, we define total server utilization:

\[\eta := \eta_0 + \sum_{n=1}^{N} \rho_n \quad \eta_0 := \lambda \alpha. \]

The server utilization \(\eta < 1 \) is assumed for stability.\(^2\)

We denote by \(q_f(m) \) the probability that \(m \) customers arrive at \(Q_\text{o} \) during service times, \(\tau_n, n = 0, 1, 2, \ldots, N, \) i.e.,

\[q_f(m) := \int_0^{\infty} \frac{(\lambda t)^m}{m!} e^{-\lambda t} dH_n(t). \]

The generating function for \(q_f(m), Q_f(x) := \sum_{m=0}^{\infty} q_f(m)x^m, \) is then given by

\[Q_f(x) = H_n^* \{ \lambda(1-x) \} \quad n = 0, 1, 2, \ldots, N. \]

We define similarly,

\[R_f(x) := \sum_{m=0}^{\infty} r_f(m)x^m = H \{ \lambda(1-x) \} \]

where

\[r_f(m) := \int_0^{\infty} \frac{(\lambda t)^m}{m!} e^{-\lambda t} dH(t). \]

The following notation is used for a differentiable generating function \(G(x,y), \)

\[G'_n(x,y) := \left[\frac{\partial}{\partial x} G_n(x,y) \right] x = a, y = b. \]

3. Queue-Length Generating Function

This section determines a generating function of the following joint queue-length distribution at departure epochs of customers from each stage, which are defined by:

\[\pi_n(i; j_1, j_2, \ldots, j_N) : \] the steady-state joint probability that just after a customer has completed service at \(S_n, n = 0, 1, 2, \ldots, N, \) the number of waiting customers in \(Q_{o1}, Q_{o2}, \) and \(Q_{oN} \) is \(i, j_1, j_2, \ldots, j_N \) respectively, and for \(\|x_i\|/y_i \leq 1, k = 1, 2, \ldots, N, \)

\[G_n(x,y), \quad \pi_n(i; j_1, j_2, \ldots, j_N) \]

\[:= \sum_{i=0}^{\infty} \sum_{j_1=0}^{\infty} \cdots \sum_{j_N=0}^{\infty} \pi_n(i; j_1, j_2, \ldots, j_N) x_1 y_1 y_2 \cdots y_N. \]

Then, considering the events that occur during two successive departure epochs at the first stage (\(S_o \)), we have the following balance equations for \(i, j_1, \ldots, j_N \geq 0: \)

\[\pi_o(i; 0, \ldots, 0, j_k = 1, 0, \ldots, 0) = \sum_{n=1}^{N} \pi_n(0; 0, \ldots, 0) p_k r_o(i) + \sum_{n=1}^{N} \sum_{m=0}^{\infty} \pi_n(i-m+1; 0, \ldots, 0) p_k r_o(m) \]

\[\pi_o(i; j_1, j_2, \ldots, j_N) \]

\[= \sum_{n=1}^{N} \sum_{m=0}^{\infty} \pi_o(i-m+1; j_1, j_2, \ldots, j_N) p_o r_o(m). \]

where we use a relationship\(^12\) that the customer departure process in the first stage is the same as the one in the first stage (\(S_o \)) without feedback having arrival rate \(\lambda \) and the service time distribution \(H(t). \)

Similarly, considering the customer departure events from the service counter \(S_n, n = 1, 2, \ldots, N, \) in the second stage, we get the following equation for \(i, j_1, \ldots, j_N \geq 0: \)

\[\pi_n(i; 0, \ldots, 0, j_n = 1, 0, \ldots, 0) = \sum_{m=0}^{i} \pi_n(i-m; 0, \ldots, 0, j_n+1, j_{n+1}, \ldots, j_N) q_n(m) \]

\[+ \pi_n(0; 0, \ldots, 0, j_n+1, j_{n+1}, \ldots, j_N) q_n(i) \]

\[+ \sum_{k=1}^{n-1} \sum_{m=0}^{\infty} \pi_n(i-m; 0, \ldots, 0, j_n+1, j_{n+1}, \ldots, j_N) q_n(m) \]

\[n = 1, 2, \ldots, N \]

where the empty sum is assumed to be zero.

Then, from (3.1) to (3.3), we obtain the following functional relations through routine calculations:

\[
G_\delta(x; y_1, y_2, \ldots, y_N) = \mathcal{H}(x) - (1-x)\pi(0) + \Phi\{Q_1(x), Q_2(x), \ldots, Q_N(x)\} - \Phi\{y_1, y_2, \ldots, y_N\}
\]

(3.4a)

\[
G_n(x; 0, \ldots, 0, y_n, y_{n+1}, \ldots, y_N) = \frac{Q_n(x)}{y_n - Q_n(x)}
\]

(3.4b)

where

\[
\pi(0) := \sum_{n=1}^{N} \pi_n(0; 0, \ldots, 0)
\]

(3.4c)

It is necessary to determine unknown probability \(\pi(0)\) and unknown function \(\Phi\{y_1, y_2, \ldots, y_N\}\).

(1) Determination of \(\pi(0)\)

From the normalization condition

\[
G_\delta(1; 1, \ldots, 1) + \sum_{n=1}^{N} G_n(1; 1, \ldots, 1) = 1
\]

(3.5)

and using L'Hospital's rule for (3.4a) and (3.4b), we have

\[
\pi(0) = \frac{1}{2} (1 - \eta)
\]

(3.6)

and

\[
G_\delta(1; 1, \ldots, 1) = \frac{1}{2} \quad G_n(1; 0, \ldots, 0, y_{n-1}, 1, \ldots, 1) = -\frac{p_n}{2}
\]

for \(n = 1, 2, \ldots, N\).

(2) Determination of \(\Phi\{y_1, y_2, \ldots, y_N\}\)

It is shown by Takacs' lemma that the denominator on the right-hand side of (3.4a),

\[
x - \alpha \mathcal{H}(\alpha(1-x)) = 0 \quad \omega := \sum_{n=1}^{N} p_n y_n
\]

(3.8)

has exactly one root, namely \(x = \delta(\omega)\), in the unit circle \(|x| \leq 1\) under the condition that \(\omega = 1, \eta_0 \leq 1\) and \(|\omega| < 1\).

(The explicit expression for \(\delta(\omega)\) is given by Appendix in Ref. [2], for example.) Since the numerator on the right-hand side of (3.4a) should be zero for \(x = \delta(\omega)\), we obtain the following functional equation:

\[
\Phi\{Q_1(\delta), Q_2(\delta), \ldots, Q_N(\delta)\} - \Phi\{y_1, y_2, \ldots, y_N\} = \Phi\{y_1, y_2, \ldots, y_N\}
\]

(3.9)

where

\[
\Phi\{y_1, y_2, \ldots, y_N\} := \frac{1}{2} (1 - \eta)(1 - \delta)
\]

(3.10)

This linear functional equation for \(\Phi\{\cdot\}\) can be solved using an iterative scheme and a boundary condition \(\Phi\{0, 0, \ldots, 0\} = G_\delta(0; 0, \ldots, 0) = 0\). In this way, the generating function \(G_n(x; y_1, y_2, \ldots, y_N)\), \(n = 0, 1, 2, \ldots, N\) have been completely determined. Thus, we obtain the following results.

Theorem 3.1 The generating functions, \(G_n(x; y_1, y_2, \ldots, y_N)\), \(n = 0, 1, 2, \ldots, N\) for the joint queue-length distribution are given by (3.4a) and (3.4b), here

\[
\Phi\{y_1, y_2, \ldots, y_N\} = \frac{1-n}{2} \sum_{m=0}^{\infty} \left[\delta \left(\sum_{n=1}^{N} p_n f_m(y_1, y_2, \ldots, y_N) \right) \right]
\]

(3.11a)

\[
\Phi\{y_1, y_2, \ldots, y_N\} = \frac{1-n}{2} \sum_{m=0}^{\infty} \left[\delta \left(\sum_{n=1}^{N} p_n f_m(y_1, y_2, \ldots, y_N) \right) \right]
\]

(3.11b)

where, \(f_m(y_1, y_2, \ldots, y_N)\) are defined by:

\[
f_n^{(m)}(y_1, y_2, \ldots, y_N) := y_n \quad |y_n| \leq 1
\]

\[
f_n^{(m+1)}(y_1, y_2, \ldots, y_N) := Q_n \left[\delta \left(\sum_{j=1}^{N} p_j f_j(y_1, y_2, \ldots, y_N) \right) \right]
\]

(4.1)

4. Analysis of Mean Sojourn Times

This section derives some explicit expressions for mean sojourn time of a type-\(n\) customer, \(n = 1, 2, \ldots, N\). Let \(\theta_1^{(n)}\), \(n = 1, 2, \ldots, N\) denote the sojourn time for a customer of type-\(n\) in the first stage (the total time spent by a customer of type-\(n\) in the first stage) and denote by \(w_1\) the waiting time in \(Q_0\) for an arbitrary customer including cycled customers. Similarly, denote by \(\theta_2^{(n)}\) and \(w_2^{(n)}\), \(n = 1, 2, \ldots, N\) the sojourn time and the waiting time for a customer of type-\(n\) in the second stage. In addition, denote by \(\delta^{(n)}\) and \(\theta^{(n)}\) the total sojourn time spent by a customer of type-\(n\) in the system and the total waiting time for the second service of a type-\(n\) customer, respectively, i.e.,

\[
\theta^{(n)} := \theta_1^{(n)} + \theta_2^{(n)}
\]

\[
\theta^{(n)} := \theta_1^{(n)} + w_2^{(n)} \quad n = 1, 2, \ldots, N.
\]

4.1 Mean Sojourn Time in the First Stage

First we derive the mean queue-length, \(E(L_{o})\), (the mean number of customers waiting and being served) in the first stage at an arbitrary epoch. Denoting by \(\Pi(x)\) the generating function for a marginal queue-length distribution in \(Q_0\) at the
instant just after customer-departures from the first stage,
\[\Pi(x) = G_0(x;1,1,\cdots,1)/G_0(1;1,1,\cdots,1). \]
(4.2)

Hence, from the property of the M/GI/1 type queue\[3, \[5\]],
the mean queue-length in \(Q_o \), \(E(L_o) \), is also obtained by
\[E(L_o) = G'_{o,x}(1;1,1,\cdots,1)/G_0(1;1,1,\cdots,1). \]
(4.3)

Next, denoting by \(E(Q_o) \) the expected number of waiting customers in \(Q_o \) at arbitrary epoch, we get
\[E(L_0) = E(Q_0) + 1 - \Pi(0). \]
(4.4)

Thus, using Little's formula, Equation (3.7) and the total arrival rate to \(Q_o (=\lambda q) \), we obtain the following results.

Theorem 4.1 The mean sojourn time in the first stage of a type-\(n \) customer, \(\tilde{E}(\Theta_n) \), \(n = 1, 2, \cdots, N \) and the mean waiting time in \(Q_o \), \(E(w_j) \), are given by:
\[E(\Theta_n) = 2G'_{o,x}(1;1,1,\cdots,1)/\lambda \]
(4.5a)
\[E(w_j) = 2\lambda/[G'_{o,x}(1;1,1,\cdots,1) + G_0(0;1,1,\cdots,1) - 2]. \]
(4.5b)

4.2 Mean Sojourn Time in the Second Stage
We first obtain the conditional expectation for sojourn time distribution of a type-\(n \) customer in the second stage, \(E(\Theta_n|J) \), where \(J := \{i; j_i, j_{i+1}, \cdots, j_N\} \) represents the system state that the number of waiting customers in \(Q_o \), \(Q_1, \cdots, Q_N \) and \(Q_o \) is \(i, j_i, j_{i+1}, \cdots, j_N \) when a tagged customer of type-\(n \), \(C^*_n \) has arrived at the second queue, \(Q_n \), \(n = 1, 2, \cdots, N \). Since the expected number of customers served at \(S_o \) during the \(i \)-busy period\[2\] is equal to \(i(i-1)\lambda^o \), we get
\[E(\Theta_n(J)) = \frac{\alpha}{\lambda} - \sum_{k=1}^{n-1} \left(\left(j_k + \frac{ip_k}{1-\eta_0} \right) h_n \right) + \left(j_n + 1 \right) h_n. \]
(4.6)

Next, we need to determine a conditional probability denoted by \(\pi^o(i; j_i, j_{i+1}, \cdots, j_N|h) \), that queue-length in \(Q_o, Q_j, \cdots, Q_N \) and \(Q_o \) is \(i, j_i, j_{i+1}, \cdots, j_N \) when a tagged customer \(C^*_n \) has arrived at the second queue, \(Q_n \), \(n = 1, 2, \cdots, N \). In order to facilitate the determination of the generating function \(G_0(x; y_1, y_2, \cdots, y_N|h) \) for the distribution \(\{\pi^o(i; j_i, j_{i+1}, \cdots, j_N|h)\} \), we introduce the probability denoted by \(\pi^o(i; j_i, j_{i+1}, \cdots, j_N) \) that at the instant just before customer-departures from the first stage, queue-length in \(Q_o, Q_1, \cdots, Q_N \) and \(Q_o \) is \(i \), \(j_i, \cdots, j_N \) respectively.

Denoting by \(G^*(x; y_1, y_2, \cdots, y_N) \) the generating function for the distribution \(\{\pi^o(i; j_i, j_{i+1}, \cdots, j_N)\} \), we have
\[G_0(x; y_1, y_2, \cdots, y_N) = G^*(x; y_1, y_2, \cdots, y_N) \sum_{n=1}^{N} \frac{p_n y_n}{x}. \]
(4.7a)

$$G_0(x; y_1, y_2, \cdots, y_N) = G^*(x; y_1, y_2, \cdots, y_N) y_N/x.$$ (4.7b)

Hence, using (3.7), we get
\[E(\Theta_n) = \sum_{n=1}^{N} \frac{G_0(x; y_1, y_2, \cdots, y_N)}{G_0(1;1,1,\cdots,1)} \{y_n/\sum_{n=1}^{N} p_n y_n\} \]
\[= \frac{2\lambda}{\sum_{n=1}^{N} p_n y_n} G_0(x; y_1, y_2, \cdots, y_N). \]
(4.8)

Thus, removing the condition \(J \) from (4.6) by using (4.8), we get the following results.

Theorem 4.2 The mean sojourn time in the second stage of a type-\(n \) customer, \(\tilde{E}(\Theta_n) \), and the mean waiting time in the second queue, \(E(w_n) \), \(n = 1, 2, \cdots, N \) are given by
\[E(\Theta_n) = \sum_{i=0}^{\infty} \sum_{j_1=0}^{\infty} \cdots \sum_{j_N=0}^{\infty} \tilde{E}(\Theta_n(J)) \pi_0(i; j_1, \cdots, j_N | n) \]
\[= \pi_0(i; j_1, \cdots, j_N | n) \sum_{k=1}^{n} p_k h_k + \frac{2}{1-\eta_0} \left(\alpha + \sum_{k=1}^{n-1} p_k h_k \right) G'_{o,x}(1;1,1,\cdots,1)
+ 2 \sum_{k=1}^{n} h_k G'_{o,x}(1;1,1,\cdots,1) \]
(4.9a)
\[E(w_n) = E(\Theta_n) - h_n \]
(4.9b)

The following inequality for \(E(w_n) \) is derived as being naturally expected:

Corollary 4.1 The switching rule, \(P = \{S_1, S_2, \cdots, S_N\} \) implies
\[E(w_1) < E(w_2) < \cdots < E(w_N). \]
(4.10)

Proof: From (4.7a) and (4.7b), we get
\[\pi^o(i+1; j_1, \cdots, j_N) \]

\[= \pi_0(i; j_1, \cdots, j_N) \sum_{k=1}^{n} p_k h_k + \frac{2}{1-\eta_0} \left(\alpha + \sum_{k=1}^{n-1} p_k h_k \right) G'_{o,x}(1;1,1,\cdots,1)
+ 2 \sum_{k=1}^{n} h_k G'_{o,x}(1;1,1,\cdots,1) \]
(4.11)

Using (4.6), (4.9a), (4.9b) and (4.11), the difference \(D \) between \(E(w_{n+1}) \) and \(E(w_n) \) is expressed by
\[D = \sum_{i=0}^{\infty} \sum_{j_1=0}^{\infty} \cdots \sum_{j_N=0}^{\infty} \left(\frac{ip_n}{1-\eta_0} + j_I h_n + j_N h_{n+1} I_n - j_h h_n \right). \]
(4.12)

Since the right-hand side of (4.12) is positive \(D > 0 \), we get (4.10).

4.3 Mean Total Sojourn Time
The mean total sojourn time and the mean total waiting time of a type-\(n \) customer are given by
\[E(\Theta_n) = E(\Theta_1) + E(\Theta_2) \]
\[E(w_n) = E(\Theta_1) + E(w_2) \]
(4.13)
Hence, Corollary 4.1 is rewritten as follows:

Corollary 4.2 The switching rule, \(P = (S_1, S_2, ..., S_N) \)

implies

\[
E(\theta_w^{(1)}) < E(\theta_w^{(2)}) < ... < E(\theta_w^{(N)}).
\]

(4.14)

Remark 4.1 Note that the inequality (4.14) does not always hold for \(E(\theta_w^{(n)}), \ n = 1, 2, ..., N \). It can be shown in a similar manner to the proof of Corollary 4.1.

5. Optimal Switching Rule

In this section, we investigate an optimal switching rule in the second stage so as to minimize a total sojourn time cost defined by

\[
C := \sum_{n=1}^{N} p_n \left(K_n E(\theta_w^{(n)}) \right)
\]

(5.1)

where \(K_n \) is the delay cost for a customer of type-\(n \).

5.1 Conservation Law

To find the optimal switching rule in the second stage, the following lemma will be necessary.

Lemma 5.1 For the two-stage tandem queue with feedback defined in Section 2, the value of \(V \) defined by (5.2) is invariant for the work-conserving switching rule\([1],[4]\):

\[
V := \frac{1}{q} (\eta_0 + \sum_{n=1}^{N} \rho_n E(w_1) + \sum_{n=1}^{N} \rho_n E(w_2^{(n)})).
\]

(5.2)

Proof: The total arrival rate to \(Q_0 \) is equal to \(\lambda/q \) and the mean total service time in the system to \(\{\alpha + \sum_{n=1}^{N} \rho_n h_n\} \).

Thus, the relationship (5.2) is directly derived from Theorem 4.2 in Ref. [6].

This lemma is an extension of the conservation law first given by Kleinrock\([4]\) and can be also extended to that for a single-server queueing network system\([1]\).

5.2 Optimal Switching Rule in the Second Stage

Using the preparation of Lemma 5.1, we shall derive the following theorem, known as the \(K/h \) rule\([4]\).

Theorem 5.1 The optimal priority assignment to minimize the total sojourn time cost, \(C \), is in descending order of \(K_n/h_n \), with the highest value of \(K_n/h_n, n = 1, 2, ..., N \).

Proof: Consider a switching rule in which the priority of just two neighboring types, say \(j \) and \(j+1 \) are interchanged, and denote the switching rules before and after the interchange as \(P = (S_1, S_2, ..., S_N) \) and \(P^# \), that is,

\[
P^# := (S_1, S_2, ..., S_{j+1}, S_j, ..., S_N).
\]

(5.3)

For all relevant queueing quantities under the condition of \(P^# \), we use the same notation modified by adding the symbol \#; for example, \(E(\theta_w^{(n)}), E(W_w^{(n)}), i = 1, 2, \pi_i, j_1, j_2, ..., j_N^n), n = 1, 2, ..., N \) and so on.

First, we compare two mean total sojourn times for a customer of type-\(n \) under the switching rules, \(P \) and \(P^# \).

Since the generating function \((P(t)) \) for the queue length distribution in \(Q_0 \) is not affected by the interchange of \(S_j \) and \(S_{j+1} \), we get the following equation by using Theorem 4.1:

\[
E(\theta_w^{(1)}) = E(\theta_w^{(2)}), \quad E(w_i) = E(w_i^#).
\]

(5.4)

Equations (4.8) and (4.9a) also yield

\[
\tau_j(\pi_i; j_1, j_2, ..., j_N^n) = \tau_i(\pi_i; j_1, j_2, ..., j_N^n) \quad \text{for } n < j \text{ and } n > j + 1.
\]

(5.5)

Lemma 5.1 and the last two equalities, (5.4) and (5.6), imply

\[
\rho_j E(w_j^{(1)}) + \rho_{j+1} E(w_{j+1}^{(1)}) = \rho_j E(w_j^{(2)}) + \rho_{j+1} E(w_{j+1}^{(2)}).
\]

(5.7)

Thus, the difference \((\Delta)\) of two total sojourn time costs for the switching rules, \(P \) and \(P^# \), is expressed by

\[
\Delta := C - C^#
\]

\[
= \rho_j \rho_{j+1} \left(E(w_j^{(2)}) - E(w_{j+1}^{(2)}) \right) \left(\frac{K_i}{h_j} - \frac{K_{i+1}}{h_{j+1}} \right).
\]

(5.8)

Using (5.5), we need to evaluate the following difference,

\[
E(w_j^{(2)}) - E(w_{j+1}^{(2)}) = \sum_{i=0}^{\infty} \sum_{k_1=0}^{\infty} \cdots \sum_{k_N=0}^{\infty} \tau_j(\pi_i; k_1, ..., k_{j-1}, k_j + 1, k_{j+1}, ..., k_N) \left[h_j(k_j + 1) - \left(h_{j+1}(k_{j+1} + 1) + ... + h_N \right) \right].
\]

(5.9)

Hence, we get \(E(w_j^{(2)}) - E(w_{j+1}^{(2)}) < 0 \). (This inequality is also clear from the property of the priority switching rule).

Therefore, \(C^# > C \), or a type-\(j \) customer should be given higher priority than a type-\((j+1) \) customer if

\[
\frac{K_i}{h_j} > \frac{K_{i+1}}{h_{j+1}}.
\]

(5.10)

Thus, using (5.10), the optimal switching rule can be obtained by interchanging some neighboring classes successively.

Hence, we get the optimal priority assignment.

Next, we consider the following cost function,

\[
C^* := \sum_{n=1}^{N} K_n E(\theta_w^{(n)}).
\]

(5.11)

Using \(K_n \) instead of \(p_n K_n \) in (5.1) and the proof of Theorem 5.1, Theorem 5.1 can be expressed as follows\([4]\):
Corollary 5.1 The optimal priority assignment to minimize the total waiting time cost, C^*, is in descending order of K_n / ρ_n, with the highest priority for the class with the highest value of K_n / ρ_n.

Remark 5.1: It is also shown that Theorem 5.1 and Corollary 5.1 hold for the cases of total waiting time costs,

\begin{equation}
C_w := \sum_{n=1}^{N} p_n \{ K_n E(\theta_{w}(n)) \} \tag{5.12a}
\end{equation}

and

\begin{equation}
C_w^* := \sum_{n=1}^{N} K_n E(\theta_{w}(n)) \tag{5.12b}
\end{equation}

respectively.

6. Conclusions

The study of priority assignments of multi-class calls is important to design various call processing programs in multi-media network nodes. From theoretical points of view, we analyzed the basic cyclic-service tandem queueing system with multi-class tasks. Some explicit expressions were obtained for individual performance measures, i.e. the mean total sojourn time of a type-n task, $n \in \{1, 2, \ldots, N\}$. Using the results, the optimal task scheduling known as the K/h rule (also called the ct rule) was derived.

Further research will be extended to the evaluation of the influence caused by the switch over time (also called walking time and overhead time) on some performance measures, and to the generalization of arrival processes, e.g., non-Poissonian renewal arrivals, correlated arrivals, batch arrivals and so on.

References

![Fig. 1 Two-Stage Tandem Queue with Feedback](image-url)