Evaluation of ORION in predimensioned networks

Erik Van Breusegem, Bart Puype, Didier Colle, Jan Cheyns, Mario Pickavet, and Piet Demeester

Department of Information Technology (INTEC)
Ghent University - IMEC
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium.
Tel.: +32 9 33 14938, Fax: +32 9 33 14899
E-mail: Erik.VanBreusegem@intec.UGent.be

Abstract. The emerging wavelength switched networks reduce the strain on packet forwarding. Unfortunately, that solution is not really efficient on a bandwidth level, and is not ideally suited for bursty traffic. Packet switched solutions, whether electronic or optical, can use statistical multiplexing to cope with bursty traffic and yield better bandwidth efficiency. In earlier work we presented a novel network concept, Overspill Routing In Optical Networks (ORION), that can combine these two worlds, withholding their advantages. In this document we further evaluate the benefits of this architecture, focusing on ORION over a predimensioned groomed topology. This is a latex adaption to the word template.

Keywords: Circuit Switching, Optical Switching, Packet Switching, Wavelength Division Multiplexing

1 Introduction

In the past optical networks opened up a vast amount of bandwidth, with the breakthrough of optical fiber and all-optical amplification. A second boom in bandwidth capacity came with the development of (Dense) Wavelength Division Multiplexing, (D)WDM. As a consequence, pure bandwidth availability is no longer the most important cost determining factor on the technological side. Originally, optical connections were used as high capacity point-to-point interconnections. Data was converted to the electronic domain every hop, and processed at an electronic router. This resulted in highly efficient sharing of the transmission resources. At the same time, however, most of the traffic handled in any router is transit traffic, i.e. still has to travel one or more hops to reach the exit point of the network. 70% of all traffic being transit is not an exception [1], which is of course mainly due to the low meshing degree of backbone networks. Given the current trend that optical transmission capacity grows faster than electronic processing capability, the electronics will become a major bottleneck. Consequently, several solutions were proposed to reduce the strain on the electronic layer. The most important one certainly is the concept of wavelength paths (or lightpaths). In this technology a wavelength passes...
transparency through an optical cross-connect (OXC), without the IP router inspecting the carried data. The drawback of this approach is that a wavelength path cannot be re-used by intermediate nodes when it is not used at full capacity. This can result in an increased amount of wavelengths needed to fulfill a set of demands. A logical next step in this evolution are Automatically Switched Optical Networks (ASONs), where the wavelength paths are set up by the control plane, without (explicit) intervention of the network operator. This allows adapting to traffic variations on a medium to large time scale (several minutes to even hours or days). However, these solutions inherently remain wavelength switched. Although the flexibility is considerably increased, the granularity, in terms of bandwidth and time scale, is still coarse.

The main contribution of this paper lies in the more sophisticated evaluation of our switching concept, Overspill Routing in Optical Networks (ORION), leading to several new insights. In the earlier papers we started with a certain network demand and then dimensioned a network, utilizing one of four switching technologies. While this evaluation gave valuable insights, it also had a few shortcomings. Most notably, a very simple routing scheme was used (shortest path only), wavelength paths were setup only end-to-end, and a wavelength path could only be used by one demand at a time. Also, no loss evaluation was possible since the network was dimensioned for a certain demand with a certain confidence level. Thus, the actual performance could not be observed. This paper addresses these issues, by turning the evaluation upside down. We start with an already dimensioned (groomed) network for a given demand (pattern), and then evaluate the benefits of ORION using loss and throughput calculations. But first, we start with shortly revisiting our recently proposed switch and network architecture proposal, which we believe succeeds in using the full benefits of ASON, without sacrificing the high statistical multiplexing gains from earlier point to point WDM (packet switched) optical networks. This introduction is mostly a short version of the concept as described in [2], which also contains a good summary and references to other ORION work.

2 ORION in a Nutshell

This paragraph explains how ORION works at a network level, which is sufficient for the discussion in the remainder of the paper. In ORION, we start from a wavelength switched WDM network, where some wavelength paths are established. In a normal wavelength switched network a lightpath passes some node transparently, i.e. the node cannot access the data in the passing wavelength. In the example of Fig. 1 node D has no access to the IP packets travelling in wavelength λ₁. Only wavelengths starting or terminating in that node can be accessed. Suppose we have the connections A-a-b-c-d-D on λ₂, B-b-c-d-e-E on λ₃ and A-a-b-c-d-e-E on λ₁, established as indicated on Fig. 1. The basic problem with wavelength switching occurs in the following scenario: when the capacity of the lightpath AD is fully used, and there is some temporary overload for this connection, the wavelength λ₁ cannot be used to carry some of its traffic, as it is dedicated for connection AE. It is, however, perfectly possible that the lightpath AE (on λ₁) is only carrying a low traffic load, so that in fact at some moments in time it is empty (we focus on packets directly over WDM here). Thus, while connection AD has a capacity shortage, AE has capacity in abundance.
While ordinary wavelength switched WDM networks cannot solve this type of situation instantly - since it requires a reconfiguration of the network - ORION enables the network to use this capacity on λ_1 (normally dedicated to the connection AE) for the connection AD by switching to the so-called overspill mode, which essentially means operating the network as if it is a point to point WDM network. What happens is: Packets, belonging to connection AD, are inserted in λ_1, which is normally dedicated to connection AE; We call this overspilling, hence the name Overspill Routing In Optical Networks (ORION). Packets inserted in a wavelength different from the lightpath of the connection are consequently called overspill packets. Likewise, packets sent on their correct lightpath are lightpath packets. When packets of connection AD are inserted in λ_1, node b has to be able to detect these, get them out and let B handle them. They have to be routed further to their destination, which, in this case, is possible by sending them out again as overspill packets on λ_3 (or again λ_1). At node c they need to get lifted out again and be handed over to C, which does the same. In our case they are sent out again as overspill packets, again on λ_3 or λ_1. The packet flow for connection AD can be seen on Fig. 1, and is indicated by the numbers in the packets. Packets in grey travel on an ORION interface (see further) between the OXC (b) and the IP/MPLS router (B). The packets in white travel (1, 2, 5 and 8) on wavelengths belonging to other connections, so capacity on links is shared!

Obviously, this kind of low-level overriding of wavelength switched behavior and wavelength break-ins need modifications of the nodes. A description of these modifications can be found in [2]. The most important characteristic, however, is that an ORION node can be built using existing components, which are either available commercially, or at least in prototype form (depending on the actual implementation method).

From a network perspective, it is very important to note that we mandate overspill packets to follow the same route as its lightpath, but on a different wavelength. In other words, when looking at the network as a point to point WDM network (i.e. the actual, physical topology), no deflection routing takes place, avoiding its stability problems under high loads. Another design choice is that an overspill packet always gets OE converted at the next encountered node (thus, it never bypasses, like a lightpath packet does). Both
these design choices are mainly to clearly separate the two modes of operation in an ORION network - point to point WDM like for overspill, and wavelength switched for lightpath packets - and to avoid further complicating the design (needlessly).

The overspill mechanism is meant as a temporary solution for a transient overload scenario. If the experienced imbalance in the network remains for a longer period of time, wavelength paths should be rearranged to accommodate for the changing traffic pattern. Typically this would mean either an intervention from the operator or a dynamic rearrangement protocol. Thus, overspill is meant as a solution for the time frame not handled by these slower mechanisms. This would mean overspill could work in a time frame of seconds up to even hours or days, depending on the underlying rearrangement technology and the severity of the imbalance. The overspill mechanism itself could even function to postpone unnecessary tearing down and construction of wavelength paths, thereby enhancing network stability. Note that the overspill mechanism can also work during path setup, reusing the otherwise wasted time during setup or teardown of a wavelength path.

3 Evaluation Methodology

In this document we want to compare three switching technologies:

1. An optimized optical network, with some established lightpaths.
2. That same optimized optical network, with ORION enabled IP routers.
3. The same optical network as in 1, but without lightpaths. This means the optical links are only used as interconnects between IP routers. In other words, no OXCs are used, and the lightpaths are thus “converted” to a series of terminated wavelengths. It can also be thought of as replacing each OXC connection with an electronic interface to the IP router.

Designing such an optimized optical network is a big challenge in itself, and not the focus of our study. In essence, one needs to establish wavelength paths that are neither underused, nor overused, and this under changing demands over relatively long time scales. This type of dimensioning is commonly called multilayer traffic engineering, and is a research topic in itself. Therefore we relied on existing work, described in [3]. In essence, we took the dimensioned network and its associated demands as a starting point. From those, we looked at loss and throughput, for changing demands. It is important to note that the dimensioning is conservative, in that it strongly avoids a highly loaded link, by applying a specific cost function (see [3] for more details). This is to incorporate short term fluctuations of the given (static) demands. Since ORION is designed to actually deal with such fluctuations we introduced them, by increasing the demands from the original dimensioning. Thus, each evaluation is roughly done in the following way:

1. Firstly, a dimensioned network for a certain traffic profile and physical topology is obtained, using the methodology described in [3].
2. A point to point network is generated from the dimensioned network. As stated, this simply involves converting the lightpaths to simple fiber interconnects. Thus, no IP routers are bypassed any longer, but the same amount of bandwidth resources is used.
3. Next, starting from the demand set used in step 1, a new demand set is created.
Fig. 2. Two loss scenarios: a simple one is trivial to calculate (left), while a more complex one (right) can pose problems. Note that in both scenarios, all traffic has equal precedence at any node.

4. Then the loss and throughput for this demand on the dimensioned network is determined. Which is followed by the loss and throughput in case overspill were enabled on the dimensioned network.

5. And lastly, from the network created in step 2, loss and throughput is also determined. In this evaluation we have not discussed one important aspect: how to determine loss and throughput in a network without simulating (or building) it. Simulation at packet level was left out as an option since simulating large high capacity networks quickly becomes too memory and cpu time intensive. Why this is a problem, and how we solved it, is described in the next paragraph.

3.1 Determining Loss without Simulation

Firstly, let us start with a trivial scenario, shown in Fig. 2 (left). Two demands, A (4 Gb/s) and B (8 Gb/s), share a common link L (10 Gb/s). The common link, L, does not have enough capacity to carry both demands, leading to a loss of $L - (A + B) = 2$ Gb/s. Assuming the node N does not apply any QoS, all traffic will have an equal loss percentage, i.e. $2/12 = 16.7\%$, with A losing $0.167 \times 4 = 0.668$ Gb/s, and B losing $0.167 \times 8 = 1.336$ Gb/s.

For simple network scenarios, this allows calculation of loss and throughput for each link and demand, by just looking at each link, determining how much traffic arrives there, and doing the calculation as above. For more complex scenarios however, a classic “chicken and egg” problem arises.

Consider the network in Fig. 2 (right). It is a simple 5 node ring, again with the two demands, A (4 Gb/s) and B (8 Gb/s). All the links have 10 Gb/s capacity, which is not sufficient to carry both demands fully. Thus, there will be loss. More specifically, there will be loss at two links, L_1 and L_4, the first links A respectively B encounter, since at those two points traffic is added, and all other links have at least the same capacity as A and B. The problem is how to determine exactly how much traffic of B arrives at the point where A enters, and vice versa. Clearly, they are dependent, and in practice there is only one solution. But how do we get it? One way is to construct a set of equations in L_1, L_4, A and B. This gives an exact algebraic solution, and can solve the problem. This however, includes inequalities, and was found impractical in a network with hundreds of
demands and possible routings. Note that we always work directionally i.e. a link from A to B can have different load, capacity and thus throughput if traversed from B to A.

Instead we adopted an iterative approach, as follows:

1. Initialize the throughput estimate for each link at 100%.
2. Take a list view of all the links in the network.
3. Select the next link in the list view.
4. Using the current throughput estimates, calculate how much demand arrives at this link.
5. Update, if necessary, the current throughput for this link, by adjusting it so that no more than the max(link capacity, demand) travels over the link.
6. Go to step 3 unless all links are visited.
7. Go to step 2 unless there is no significant difference with the previous iteration.

For the above described example, this would work as follows:

- Initialize (relative) throughput of \(L_1 \) and \(L_4 \) at 1 (=100%)
- Looking at \(L_1 \), A has an estimated demand of 4 Gb/s here, and B 8 Gb/s (since no loss is assumed at \(L_4 \)). This gives a total demand of 12 Gb/s, and hence a loss rate of 0.167. The throughput at link \(L_1 \) is adjusted to 0.833.
- Looking at \(L_4 \), A has an estimated demand of \(4 \times 0.833 = 3.332 \) Gb/s here, and B 8 Gb/s. Total demand thus is 11.332 Gb/s. The new throughput estimate for \(L_4 \) is 0.882.
- Throughputs have changed significantly, so the previous steps are repeated so that:
 - \(L_1 \) becomes \(10/(4 + 0.882 \times 8) = 0.905 \), thus \(L_4 \) becomes \(10/(8 + 0.905 \times 4) = 0.861 \)
 - \(L_1 \) becomes \(10/(4 + 0.861 \times 8) = 0.918 \), thus \(L_4 \) becomes \(10/(8 + 0.918 \times 4) = 0.857 \)
 - \(L_1 \) becomes \(10/(4 + 0.857 \times 8) = 0.921 \), thus \(L_4 \) becomes \(10/(8 + 0.921 \times 4) = 0.856 \)
 - etc., until enough precision is reached.

In the above example the throughput estimates converge monotonically towards the actual values (\(L_1 = 0.922144 \) and \(L_4 = 0.855536 \), when solved using algebra). This is not always the case. For example, we sometimes observed that a certain link is initially found as having a big loss, but in the next iteration has no loss at all. Those kind of big jumps are usually caused by big bottleneck links which are updated late in an iteration. Throughout all evaluations we made however, the solution always converged (usually within 10 iterations to a precision over \(10^{-8} \)). Thus, while convergence was a major concern when implementing this method of calculating loss, in practice we found no problems.

Another concern is whether the converged solution is the right one. More specifically, our concern was that the algorithm could converge to different throughput values depending on the start values. Clearly, in a real network there is only one solution under the assumed conditions. Although we have no theoretical proof, the algebraic equations (inequalities) we solved for some simple scenarios consistently agreed with the algorithm. Also, we tried several different start values for the algorithm, and they all converged to the same value. Therefore, we are confident in its correctness.

3.2 Determining Overspill

With the technique described in the previous paragraph we can determine throughput and loss statistics for an arbitrary network of any size, with or without wavelength paths,
within a reasonable time frame. The other question is how to determine the amount of traffic travelling in overspill mode. For this we need two pieces of information:

1. The amount of capacity available for overspill. This depends on the free capacity of the network, after taking into account losses.
2. The amount of traffic wanting to use overspill. This depends on the loss in the network.

In essence, if you look at a classic optical network with wavelength paths, the loss in the network is equal to the total overspill demand on the network. For example, suppose a demand X from node S to D normally loses a portion L of its traffic at an intermediate node I, because the logical link I-D there is saturated (cf. Fig. 3 (left)). In an overspill enabled network, that portion of the traffic will become an overspill demand X-L from node I to node D. If applied to all demands and all hops, this enables us to determine the total overspill demand on the network. Note that the route for the overspill demand is also fixed: in ORION we always mandate that overspill traffic follows the same physical path as its associated lightpath traffic. Thus, we can construct an "overspill view" of the network (as shown in Fig. 3 (right): This is a network with the same links as the physical topology of the network. The capacity of each of these links is equal to the sum of the free capacities of lightpaths utilizing this physical link. Thus, we make an abstraction of which wavelength exactly carries what portion of the overspill traffic.

Another problem is how to determine the capacity available for overspill. This is actually a much easier problem once you make the following fundamental realization: Operating a network in overspill is operating the network as if all lightpaths are locally O/E/O terminated at every IP router. Thus, we can construct an "overspill view" of the network (as shown in Fig. 3 (right): This is a network with the same links as the physical topology of the network. The capacity of each of these links is equal to the sum of the free capacities of lightpaths utilizing this physical link. Thus, we make an abstraction of which wavelength exactly carries what portion of the overspill traffic.

Thus, we have a new network with new demands, which reflects the overspill portion of the network. This network can be evaluated in exactly the same way as the original
network. From the throughput figures we can compute for each original demand how much traffic gets through, how much traffic gets through in overspill (and where it enters the overspill mode), and how much traffic is lost (and where).

4 Simulation Results

In this section we discuss the two most interesting results we currently obtained from experimenting with the setup as described in the previous paragraphs. In each case, we compare the three options described in section 3. The first one is a general scenario, in which we averaged out the results of 1000 different predimensioned topologies and corresponding demands. In each of those networks, all demands were then increased proportionally, creating a global network spike. This gives a general feel of how ORION behaves. The second result is a more detailed look at one specific predimensioned network with corresponding demand, taken out of the set of 1000 for the general case. They were both performed on a hypothetical pan-european topology [3], [5].

4.1 General Overload Scenario, averaged out over 1000 runs

Fig. 4 (left) shows the general picture. It shows the average loss - defined as total traffic lost divided by total traffic offered - of a groomed topology, that same groomed topology with overspill enabled, and an equivalent point to point topology (equal wavelength resources). This is in function of an increasing demand, relative to the demand that the network originally was dimensioned for. The right Y-axis at the same time shows how much traffic is sent through the overspill mechanism.

The first observation is quite trivial: given a certain demand, in this case at around a 40% traffic increase, the groomed topology gives in first, and shows rapidly increasing loss. The p2p architecture holds out longer, until traffic increases over 70% from our starting point. This is a simple confirmation, and a well known characteristic. Due to higher multiplexing capabilities, the p2p architecture has more flexibility, at the cost of (much) more IP traffic processing. It achieves up to several orders of magnitude less loss.
Or, stated otherwise, the p2p architecture can sustain a higher load given an equal loss rate. Here, p2p can sustain on average about 20% more traffic than the groomed version.

However, this picture changes drastically once the groomed topology is enhanced with the overspill capability. As the figure shows, if ORION is taken into account, the point at which the groomed topology starts seeing significant losses coincides with the p2p architecture! In other words, the overspill mechanism can compensate entirely for the loss in flexibility. That the overspill mechanism is responsible for this substantial gain, is again confirmed if you look at how much traffic actually uses the overspill mode (Fig. 4 (left), right Y-axis). The increase of loss in the groomed topology is the same as the amount of traffic in overspill. This is no coincidence, since overspill only transports traffic which would otherwise be lost.

The overspill can of course compensate only for so much loss. At a certain point the network simply becomes saturated at a physical level, and the amount of traffic in overspill levels off. Even the enhanced groomed topology (with overspill) starts to show loss. Interestingly, this is around the same load that the point to point topology experiences loss. In effect, the overspill mechanism closes the ~20% performance gap between them, causing the groomed topology to behave as if it were an p2p solution, but with smaller IP routers (and of course the ORION add-on equipment).

If you look at the figure closely however, you even see that the groomed topology enhanced with overspill even performs slightly better at extreme loads. Figure 4 (right), one isolated result out of the 1000 run sample, shows an even more puzzling behaviour. At extremely high loads, the groomed topology outperforms the point to point topology, even without using overspill! We found an explanation for this phenomenon: It is caused by streams choking other streams, which in turn are choked as well. Figure 5 shows a simplified example.

Suppose we have two 30 Gb/s demands as in the shown network, carried over only one wavelength of 40 Gb/s capacity. Also, there is a problem with this network, which causes the last link in the upper right to have near-zero throughput. This can be caused either by a link failure, or other (very large) demands trying to use that link. The left figure is that network in a simple point to point configuration. The overall network throughput, end to end, is only 33%. Thus, if we setup a wavelength path (as in the right figure), we can actually improve overall network throughput.

Although this example is quite limited, it does show that in some extreme circumstances, like a large overload for the network (in the order of double its capacity), wavelength switching can have an advantage over point to point traffic. In general this is
caused by the fact that in severely overloaded networks a lot of traffic survives few hops, but almost no traffic survives the complete path due to collisions with other traffic. In a wavelength switched solution there a lot less hops at the logical IP layer, meaning that the overall chance to complete the end to end trajectory can be higher, if looking at the total useful network throughput. The end result is that in wavelength switching a small portion of traffic gets through, while most is lost at the very beginning. In effect, this creates an unfair situation which strangely improves total network throughput.

Note that these kind of situations are rare in most well-designed networks (we observed it only in one network in the batch of 1000), and that the difference observed (as you can see in Fig. 4 (right)) is rather small. It may however be useful to try to exploit this behavior in highly variable network environments.

5 Conclusions

In this paper we used an evaluation methodology, allowing us to assess network performance (loss and throughput) of our recently developed ORION concept in a more convincing way. This allowed using more sophisticated multilayer traffic engineered networks. As expected, the difference in performance with or without ORION is not spectacular (~20% on average in the observed cases), but still very significant. In addition, an interesting effect was discovered in which a point to point switched WDM network can be outperformed by an equivalent wavelength switched network. This same effect also makes a wavelength switched network with ORION enabled outperform slightly a comparable point to point switched WDM network. Thus, the hybrid nature of ORION makes the resulting network more than just the sum of its parts.

6 Acknowledgements

This work was partly funded by the European commission through projects IST-LASAGNE (FP6 506760) and IST-NOBEL (FP6 507509). The Flemish government also funded through the IWT-GBOU project ”Optical Networking and Node Architectures”, and through a PhD and postdoctoral grant to E. Van Breusegem and D. Colle, respectively.

References