Performance analysis of the CSMA/CA MAC protocol in the DBORN optical MAN network architecture

Guoqiang Hu, Christoph M. Gauger and Sascha Junghans

University of Stuttgart, Institute of Communication Networks and Computer Engineering
Pfaffenwaldring 47, D-70569 Stuttgart, Germany
e-mail: {hu, gauger, junghans}@ikr.uni-stuttgart.de

Abstract: In this paper, we present a detailed performance analysis of the MAC protocol of the DBORN metro network architecture. We introduce an exact analytical model for the slotted mode and models for the unslotted mode which yield good upper and lower bounds. Also, we introduce a new moment analysis approach to derive the mean waiting time of preemptive repeat identical priority systems. Then, we validate the analytical model by simulation and assess important architectural options regarding delay and admissible network load. In order to consider realistic burst traffic characteristics, we extend the evaluation towards general arrival processes and finally employ a burst assembly module with self-similar IP traffic.

1. INTRODUCTION

With the continuously increasing traffic demand, MANs are becoming the bottleneck of the network infrastructure, in comparison to the current over-dimensioned core networks. Internet service providers today ask for equipment with higher bandwidth but lower cost. This motivates the application of optical solutions with WDM technology. In consideration of the high cost of active optical switching elements, an optical network architecture without active optical switching elements is desirable. The DBORN (Dual Bus Optical Ring Network) architecture is a MAN technology suitable under these constraints [4,16]. For this aim, a new MAC protocol and interface card was designed [4,16] which we survey in more detail in Section 2.

In this paper, we present for the first time our detailed teletraffic theoretical analysis [8] as well as a comprehensive performance evaluation based on analysis and simulations. First, we describe the exact mean waiting time model for the slotted mode as well as upper and lower bound models for unslotted mode based on the Preemptive Repeat Identical (PRI) priority system. Second, a new moment analysis approach is derived for PRI systems for Poisson arrivals. This new method not only simplifies the derivation of the mean waiting time by only using first and second moments of busy period and completion time, but also explains its exact relation to the busy period of high priority customers. Third, we validate the analytical models and bounds by simulation for a Poisson arrival process. The applicability of the Poisson traffic model is then further validated by comparing the results with general independent (GI) traffic models of different variability. We then extend our work to realistic aggregate burst traffic that is assembled from self-similar IP traffic. Following this systematic approach, we show that under most practical circumstances Poisson traffic can be a good approximation or act as a useful worst case traffic model.
Regarding DBORN, only individual aspects have been evaluated and reported so far. Key technology solutions, e.g., burst-mode transceivers, and implementation issues are presented in [6]. A protocol providing access fairness among network nodes and assuring QoS for premier traffic is reported in [2,4] and evaluated in [11]. Work dedicated to system performance of DBORN is available in [3,8,10,11]. While [3] and [8] both present a lower bound analysis, which was independently found in parallel, our presentation in [8] also contains the exact analysis for slotted operation mode, the analytical model for the upper bound based on the new mean value analysis, and a detailed performance evaluation. In [10], we presented simulation results for basic MAC performance, a back-pressure mechanism and the buffer allocation in the transceiver card.

Regarding PRI priority queueing systems, standard analytical models following Jaiswal [14] and Takagi [17] are commonly applied to obtain the Laplace-Stieltjes transformation of the waiting time and then derive its moments. In contrast, we derive the mean waiting time more directly by setting up its relation to the moments of busy period and completion time.

The remainder of this paper is structured as follows. In Section 2, we will survey the DBORN network architecture and its MAC protocol, Section 3 describes the analytical models of the MAC protocol and Section 4 shows the results of the model validation and the performance evaluation studies. In Section 5, conclusions are drawn and further work is outlined.

2. NETWORK ARCHITECTURE AND MAC PROTOCOL

DBORN is a high speed network solution for metropolitan areas [16]. On the basis of advances in the optical transmitter and receiver technology [6], the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is realized in DBORN.

2.1 Network architecture

DBORN is a WDM ring architecture connecting several edge nodes, e.g., metro clients like enterprise, campus or LAN, to a regional or core network. The ring consists of one working fiber and one protection fiber (Fig. 1) which provides resilience. Each ring carries a set of wavelengths which are further classified into downstream and upstream wavelength channels (Fig. 1 right). While downstream wavelength channels start from the transmitters in the hub, upstream wavelength channels are terminated by the receivers in the hub.

Edge nodes share up-/downstream channels in asynchronous TDM. For load balancing purposes, an edge node can be attached to multiple up-/downstream channels. Aiming at a sim-

![Fig. 1 DBORN architecture](image)

![Fig. 2 Burst assembly in the edge node](image)
ple implementation of the edge node interface, all traffic has to pass the hub. No edge node receives or even removes traffic on upstream channels or inserts traffic on downstream channels. Thus, both up-/downstream channels can be modelled as shared unidirectional buses.

As the hub node exclusively transmits on the downstream channel, traditional scheduling mechanisms can be applied here. However, medium access of edge nodes has to be controlled on the upstream channel which will be analysed in depth in the rest of the paper.

2.2 Burst size and burst assembly

In order to provide for safe transmitting and receiving on the ring a guard time has to be inserted between consecutive optical transmission units. Typical guard times with current technologies are 50 ns [6], which results in transmission times of about 63 B on a 10 Gbps link.

DBORN targets transaction data and Internet traffic which is commonly transported over Ethernet, i.e. client layer packet sizes are in the range of 40 to 1500 B [20] bounded by the Ethernet maximum transmission unit (MTU). As transmission of individual client layer packets/frames would lead to a significant overhead due to guard times, it is considered that in future versions all client layer traffic is assembled into larger units called bursts (e.g. ITU-T’s G.709 frame format with a size of about 16 KB [13]) for transmission. A considerable amount of literature on burst assembly is available in the context of optical burst switching (e.g. [7][9][19]). Alternatively, segmentation of client layer packets is proposed in [1].

In case the G.709 format is applied, traffic assemblers need to be deployed in edge nodes (Fig. 2). Incoming IP packets are classified according to the address of the destination node and stored in correspondent assembly queues. A general assembly algorithm is so-called Max-Size-TimeOut assembly, with Parameter S_{max} denoting the maximal burst size and τ denoting a predefined timeout parameter. The timer is set upon arrival of the first IP packet to an empty assembly queue. A burst becomes ready for transmission whenever the accumulated data volume in the assembly queue is about to exceed the MaxSize or the timeout occurs. Therefore, S_{max} sets the upper bound for the burst size and τ serves as an upper bound for the burst assembly duration. Burst assembly has an impact on the traffic characteristic and therefore also influences the network performance [5]. This issue will be studied in Section 4.

2.3 MAC protocol

As DBORN targets a cost efficient optical ring solution, no active optical components, e.g. switches, are used on the interface cards and transmitting and receiving part are strictly separated. Fig. 3 depicts a functional model of the transmitter interface, which was designed to allow a collision-free medium access.

Between the input (point A in Fig. 3) and the output (B) of the edge node a Fiber Delay Line (FDL) is inserted into the ring. The length of the FDL should correspond to a delay equal to or greater than the transmission time of the maximum burst size. At the input of the edge node, a simple sensor taps the upstream channel and constantly monitors the channel status—busy or idle. On the other side of the FDL a laser is coupled into the same channel and controlled by the decision unit to send bursts safely. Due to the delay introduced by the FDL, the edge node can determine the duration of voids on the channel up to the FDL delay before they pass the coupling point of the laser and thus decide on the medium access avoiding collisions.

There are two possible operation modes for DBORN: slotted and unslotted. In the slotted mode, the channel is divided into constant duration slots and the transmission is allowed if the edge node finds an idle slot on the upstream channel. This means a simple decision procedure.
However, additional synchronization between nodes is required. In the unslotted mode, no synchronization is required and bursts can have an arbitrary transmission time up to the FDL delay. By comparing the duration of an available void on the channel and the transmission time of the first burst in the transmission queue the edge node can decide when to transmit a burst.

3. ANALYSIS FOR A SINGLE UPSTREAM CHANNEL

In this section, we present our performance model for a single DBORN upstream channel applying the CSMA/CA MAC protocol described in Section 2.3. The performance metric is the mean waiting time of an already assembled burst before transmission. In Section 3.1, we deduce the exact mean burst waiting time for slotted mode. Bounds on the mean burst waiting time are given by approximate solutions for unslotted mode in Sections 3.2 and 3.3.

An edge node can only use bandwidth (voids) on the channel left over by other nodes located further upstream. This behavior can be modelled by a priority queueing system as illustrated in Fig. 4 in which \(p \) queues compete for a single server and a queue is only allowed to send if all higher priority queues are empty [8]. Nodes are indexed in ascending order following the traffic flow direction and are abstracted by their transmission queue. The priority of the queue is defined by the node index \(i \), i.e., a smaller node/index index corresponds to a higher priority class. Note that the distance between the edge nodes only affects the propagation delay but does not impact our mean waiting time analysis and consequently is modelled as zero.

For the analysis, we assume that each class injects traffic following a Poisson arrival process with rate \(\lambda_i \) and that traffic streams of different nodes are independent of each other. The service time of bursts is independently and identically distributed with mean \(h_i \).

3.1 Exact analysis of mean waiting time for slotted mode

In slotted mode, constant slot time equivalent to the fixed burst transmission time \(h \) is assumed. An edge node decides on medium access at the start of a slot. This indicates a slotted priority system where the queues compete for transmission only at slot boundaries. From a mean value analysis [15] it follows that the mean waiting time \(W_i \) of a class-\(i \) customer equals

\[
E[W_i] = \frac{h}{2} + \sum_{k=1}^{i} E[X_i]h + \sum_{k=1}^{i-1} (E[W_i]\lambda_i)h
\]

where \(X_i \) denotes the queue length of class \(i \). It indicates that the mean waiting time experienced by a test customer\(^1\) consists of three parts: (i) the average residual lifetime of a time slot,

\(^1\)Arrival customer and outside observer waiting time are identical according to the PASTA theorem.
(ii) the workload of those customers of higher or equal priority who have been in the system upon arrival and will be served prior to the test customer, and (iii) the workload of those customers of higher priority who will arrive after the test customer and will be served prior to him.

From Little’s Theorem \(E[X_i] = \lambda_i E[W_i] \) an Equ. (1), the mean waiting time follows:

\[
E[W_i] = \frac{h/2}{(1 - \rho_{s_i})(1 - \rho_{s_{i-1}})}
\]

where \(\rho_{s_i} = \sum_{k=1}^{i} \lambda_k h \) denotes the total offered traffic of classes 1, ..., \(i \). From Equ. (2) it can be seen that the mean waiting time \(E[W_i] \) is always finite as long as the \(\rho_{s_i} < 1 \), which corresponds to the work-conserving property of the slotted mode.

3.2 Upper bound on mean waiting time for unslotted mode

In unslotted mode, no slot synchronization is available and bursts can have an arbitrary size up to the maximum burst size. An edge node only sends a burst if it can find a void on the channel which is large enough. As a consequence, there may be voids becoming too small to be filled, so called channel fragmentation, and burst transmission is no longer strictly in the priority order of node location but also depends on void and burst sizes.

Thus, the unslotted mode does not lend itself to the straightforward analysis used for the slotted mode. Also, arrivals of busy/idle periods on the channel observed by a downstream edge node now follow a correlated random process and thus renewal theory does not apply any more. Still, a preemptive repeat identical (PRI) queueing system as alternative, approximate model yields an upper and a lower bound on the mean waiting time.

In a PRI system, a low priority customer in service can be preempted by a newly arriving high priority customer. The turn comes to the preempted customer again after all higher priority customers are served and service starts from the beginning which is called preemptive repeat. In each repetition a customer’s required service time remains identical, i.e., there is no resampling after preemption. A low priority customer can only be completely served if it finds a service time interval without arrivals of higher-priority customers.

This is an essential analogy to the unslotted DBORN MAC protocol. The difference lies only in the fact that an edge node will not send if the void is too small, so these voids can still be utilized by edge nodes located further downstream, while in PRI system the customer occupies the server no matter whether he will be preempted or not. As the server capacity wasted by the unfinished service in case of preemption leads to a performance degradation, for all lower priority classes the PRI system yields an upper bound for the mean burst waiting time.

Let \(D_{i,\text{PRI}} \) denote the interval for a class-\(i \) customer in the PRI system between his arrival to the system and the start of his effective service period, i.e., the period in which he gets fully served. The mean burst waiting time in node \(i \) is then bounded by \(E[D_{i,\text{PRI}}] \):

\[
E[W_i] \leq E[D_{i,\text{PRI}}].
\]

Note that in Equ. (3) the equality holds for \(i = 1, 2 \). Only classes with \(i \geq 3 \), suffer from the non-effective consumption of server capacity due to the preemption.

For the derivation of \(E[D_{i,\text{PRI}}] \) several intermediate parameters are needed. Completion time \(C_i \) denotes the interval between the instant at which a class-\(i \) customer enters service for the first time and the final completion of his service. Note that we assume here that the customer leaves the queue when he first starts service, i.e., he does not return to the queue \(i \) when being preempted. In this way the completion time can be regarded as "virtual service time" of a customer. The waiting time \(W_{i,\text{PRI}} \) of a class-\(k \) customer refers only to the time he waits in the
queue. Busy period B_i denotes the duration of an interval in which there is at least one customer of class i or of higher priority in the system. This corresponds to the time the server is continuously occupied by traffic of class i or of higher priority. Both completion time process and busy period process are renewal processes. $E[D_{i,\text{PRI}}]$ can thus be expressed as

$$E[D_{i,\text{PRI}}] = E[W_{i,\text{PRI}}] + E[C_i] - h_i$$ \hspace{1cm} (4)

The solution of $E[C_i]$ is available in [14]. In [17] a derivation of $E[W_{i,\text{PRI}}]$ is given by applying complex transformation techniques. Here, we present a novel, more direct but still exact derivation of $E[W_{i,\text{PRI}}]$ by using the mean value analysis method. $E[W_{i,\text{PRI}}]$ can be further decomposed into two parts

$$E[W_{i,\text{PRI}}] = E[X_i]E[C_i] + P_{\text{busy},i}E[\Gamma_i]$$ \hspace{1cm} (5)

where X_i denotes the queue length of class i and the first term on the right hand side denotes the completion time of all customers in queue i which arrived earlier and have not yet started service. Γ_i represents the residual sojourn time of the class-i customer at the head of the queue before he leaves the queue and will be looked at below in more detail. $P_{\text{busy},i}$ is the probability that the server is in a busy period in terms of class-i customers with

$$P_{\text{busy},i} = E[B_i]/(E[B_i] + 1/\lambda_{\text{\leq} i}).$$ \hspace{1cm} (6)

Here, $\lambda_{\text{\leq} i}$ denotes the total traffic rate of class i and of higher priority and represents the termination rate of the idle period between two busy periods B_i. Note that as arrivals are Poisson and an idle period is terminated by any arrival of classes $1, \ldots, i$, its duration is negative exponentially distributed with its expected value $1/\lambda_{\text{\leq} i}$.

Now, we concentrate on $E[\Gamma_i]$ by studying following situations:

1. With probability $\lambda_i/\lambda_{\text{\leq} i}$ the current busy period B_i starts with the service of a class-i customer. In this case it can be proven\footnote{A hint for the proof: The counter-example arises if and only if a busy period B_{i-1} starts exactly at the instant when a completion time C_i ends. However, this occurs with probability 0.} that presently there is definitely a class-i customer in the system who has left the queue but not yet finished his service. Therefore, $E[\Gamma_i]$ equals the residual completion time and it yields $E[\Gamma_i] = E[C_i]/(2E[C_i])$.

2. If the busy period B_i starts with a higher priority customer or equivalently starts with a busy period of B_{i-1}, two possibilities exist:

2.1. With probability $E[B_{i-1}]/E[B_i]$ the present time falls in this first busy period B_{i-1} contained in the current B_i. Then Γ_i equals the residual time of the busy period B_{i-1}:

$$E[\Gamma_i] = E[B_{i-1}^2]/(2E[B_{i-1}]).$$

2.2. Otherwise, with the same argument as in case 1, there is $E[\Gamma_i] = E[C_i^2]/(2E[C_i])$.

Based on those arguments, $E[\Gamma_i]$ can finally be expressed as

$$\frac{\lambda_i}{\lambda_{\text{\leq} i}} \cdot \frac{E[C_i]}{2E[C_i]} + \frac{\lambda_{\text{\leq} i-1}}{\lambda_{\text{\leq} i}} \cdot \left(\frac{E[B_{i-1}]}{E[B_i]} \cdot \frac{E[B_{i-1}^2]}{2E[B_{i-1}]} + \left(1 - \frac{E[B_{i-1}]}{E[B_i]}\right) \cdot \frac{E[C_i^2]}{2E[C_i]} \right).$$ \hspace{1cm} (7)

The first and secondary ordinary moment of C_i and B_i can be calculated for $1 \leq i \leq p$ according to the iterative formulas in [14], which are also summarized in [8]. Then, Equ. (6) and (7) can be computed directly. Using Little’s Theorem $E[X_i] = \lambda_i E[W_{i,\text{PRI}}]$ and inserting Equ. (6) and (7) into Equ. (5) we obtain $E[W_{i,\text{PRI}}]$. At last, the exact solution for $E[D_{i,\text{PRI}}]$ can be derived from Equ. (4).
3.3 Lower bound on mean waiting time for unslotted mode

Based on the case of equality in Equ. (3), we found an alternative approximate resulting model as illustrated in Fig. 5. From the point of view of edge node \(i \), channel traffic generated by the \(i - 1 \) upstream edge nodes is approximately the same as the traffic generated by one upstream edge node but with same total traffic intensity. This system can be abstracted by a two-class PRI system. Queue A models all upstream nodes and has a traffic arrival rate \(\sum_{k=1}^{i-1} \lambda_k \). Queue B represents the observed edge node \(i \) with traffic arrival rate \(\lambda_i \). The mean waiting time of a class-B customer can be computed as described in Section 3.2.

However, modelling edge nodes \(1, \ldots, i - 1 \) with one queue entirely removes the effect of channel fragmentation introduced by the MAC protocol, i.e., the fact that all edge nodes \(2, \ldots, i - 1 \) experience an additional waiting time due to bursts arriving on the ring and too small voids in between. Thus, this approximation leads to an optimistic estimation of the performance and constitutes a lower bound on the mean waiting time for unslotted operation.

4. PERFORMANCE EVALUATION

In this section, the results of Section 3 will be validated for slotted mode and unslotted mode under the modelling assumptions using simulation. Their performance will be compared at the same time. To analyze MAC protocol performance in a more real network environment, we also look at the cases when burst arrivals follow General Independent (GI) process with different levels of variation. Finally, we include a burst assembly unit into the scenario to generate burst traffic from self-similar IP traffic and present the impact on performance.

In the evaluation scenario a single 10 Gbps upstream channel shared by 10 edge nodes is conceived. Traffic is homogenous across all nodes regarding demand and burst characteristics. For unslotted mode both fixed burst size and variable burst size are considered, for slotted mode only the fixed size is used. We use the 16 KB maximal burst size (c.f. Section 2.2) which has a transmission duration of 12.8 \(\mu s \). The term load always refers to the ratio of average traffic bitrate and channel capacity. In all graphs, mean waiting time is normalized by the FDL delay which here equals to 12.8 \(\mu s \), i.e., the transmission duration of a burst of 16 KB.

4.1 Principle behavior and validation of the analytical models

For the slotted mode, the mean waiting time analysis is exact and was found to be in perfect consistency with the simulation results. For the unslotted mode, the upper bound and lower bound calculated according to Section 3.2 and Section 3.3 are depicted in Fig. 6 for fixed burst size and in Fig. 7 for variable burst size over node index. In the variable size case, we use independent discrete uniform distributions between 5058 B and 16 KB to cover a broad spectrum of burst size variability in the presence of a fixed upper bound of 16 KB.

First of all, the curves for the two approximations bound the simulation results very well. The bounds are tighter for upstream nodes and scenarios with lower load. This can be explained by the smaller channel fragmentation in both cases. For a total network load up to 0.7 the mean waiting time is less than 20 FDL delay times (about 0.25 ms). Downstream nodes experience larger delay due to the intrinsic location priority of the MAC protocol. However, at small and medium load, the performance different between edge nodes is not really prominent.

Comparing the figures, it can be found that the mean waiting time is higher in the fixed size than in the variable size case which is due to the smaller mean burst size. This effect can already be explained by standard queueing models, but also by the fact that the smaller burst size also increases the probability of fitting a burst into a void.
4.2 Maximal network load

A key techno-economic metric for a network operator is the maximal network load for given Quality of Service (QoS) constraints. As DBORN does not incur burst loss and as the last edge node has the worst performance, we define the critical QoS constraint in DBORN as the delay of the last node. For a given delay constraint of \(w \), the maximal admissible network load can be exactly calculated from Equ. (2) for slotted mode and by numerically solving the upper bound in Equ. (4) for unslotted mode.

In Fig. 8, the maximal network load is drawn with respect to the number of total edge nodes for slotted and unslotted mode and a delay constraint of \(w \) of 5 and 10 times the FDL delay. Again, in unslotted mode we distinguish the fixed and variable burst size case with the same parameters as in Section 4.1. It can be observed in Fig. 8 that the admissible network load gets smaller with large number of network nodes. However, such a dependence between the load bound and the number of edge nodes decreases when the network is large.

Slotted mode outperforms the unslotted mode by more than approx. 10% in the maximal operational network load as it causes no bandwidth fragmentation which we also showed by extensive simulation results in [10]. In unslotted mode, the variable burst size case is a little better than the fixed burst size case due to the smaller mean transmission time of one burst.

In the following, we focus on the performance of the unslotted mode which is preferred for DBORN due to its flexibility in channel access as well as in implementation.

4.3 Impact of burst interarrival time distribution

To study the impact of burst interarrival time variability, we use a GI arrival process based on a phase type model. Through proper parameter settings, the Coefficient of Variation (CoV) \(c \) is tuned to 0.5, 0.8, 1 and 2 respectively. For a load of 0.7 and a fixed burst size of 16 KB, Fig. 9 shows the mean waiting time over node index. Variable burst size leads to very similar system behavior and is thus not shown here. For comparison, the analytical upper bound and lower bounds for the Poisson arrival process are also sketched. Note GI arrival process with \(c = 1 \) here corresponds exactly to the Poisson arrival process.

It can be seen that the performance is very sensitive to the traffic variability in the interarrival time. A large value of CoV (\(c = 2 \)) leads to a much worse fairness performance which cannot be estimated from the analytical performance bounds any more. As long as \(c < 1 \) the Poisson burst traffic can act as a worst case assumption. Especially, when the CoV is close to 1 (\(c = 0.8 \)), the delay performance in each edge node is also similar to that of Poisson traffic.
4.4 Assembled burst traffic

Now, the burst assembler (see Section 2.2) is included in each of the 10 edge nodes. IP packets are classified according to the targeted egress node which serves as gateway (9 other edge nodes and the hub node). For this study, we restrict ourselves to a uniform traffic pattern. We apply an M//Pareto model to generate self-similar IP traffic [18]. Data sessions arrive according to a Poisson process. The size of a session follows the Pareto distribution with mean value 10 KB, minimum value 3750 B and a shape parameter of 1.6 (i.e., Hurst parameter 0.7). Data sessions are segmented into packets with maximal packet size of 1000 B and are then sent at a constant rate of 100 Mbps which corresponds to the access link rate of an end user.

The burst assembler parameters are $S_{\text{max}} = 16$ KB and $\tau = \alpha S_{\text{max}} / R_{\text{in}}$. Here R_{in} denotes the average IP traffic arrival rate observed by each assembly queue. α is a scalar to tune the values of the timeout τ. As we assume a well-designed or adaptive burst assembler we do not consider small values of α and only use 1.0, 1.5, and 2.0, respectively.

First, the distribution of the burst size is plotted in Fig. 10 for a network load 0.7. It can be seen that the density is mainly located in the range larger than the minimum session size of 3750 B. As the relatively large timeout values (about 1.8, 2.7, and 3.7 ms for $\alpha = 1.0, 1.5, 2.0$) are greater than the minimum (0.3 ms) and even mean (0.8 ms) session duration, it is very unlikely that less data than the minimal session size is collected during τ. On the other side, $S_{\text{max}} = 16$ KB bounds the distribution. In general, the distribution looks like a combination of uniform distribution (in the range of 3750 and 16 KB) and deterministic probability distribution (in the area close to 16 KB). Larger values of α shift the weight of the distribution to the right end, i.e., the distribution approaches the fixed burst size case.

Fig. 11 depicts the normalized mean waiting time for bursts arriving from the assembler and from a Poisson process with fixed (16 KB) and variable burst size (uniform distribution between 3750 and 16 KB). We observe that the performance difference caused by the assumption of Poisson burst arrivals is not prominent. This can be explained by the fact that the aggregate burst traffic in each node is multiplexed from 10 burst assembly queues. Although the burst traffic from each assembly queue is rather smooth [19] multiplexing increases the traffic variability again and finally makes the system performance approaching that under Poisson traffic [12]. Consequently, the Poisson assumption and fixed burst size can together serve as a worst case scenario: With a large number of assembly queues the CoV of the multiplexed burst interarrival time is very close to the 1 (about 0.9 in the scenarios here) and the Poisson process models burst arrivals well. This can be seen in Fig. 11 as the mean waiting time with assem-
bled bursts is located in between the case of Poisson arrivals with fixed burst size and Poisson arrival with variable burst size.

5. CONCLUSION AND OUTLOOK

This paper models and studies the performance of the MAC protocol of the DBORN optical burst-mode metro network architecture. We describe and successfully validate our analytical performance models for Poisson arrivals. The model for slotted operation mode is exact while the approximate models for unslotted operation lead to upper and lower bounds. Also, a new analysis approach for the mean waiting time of preemptive repeat identical priority queueing systems based on moment analysis is given and applied to the models for unslotted mode.

Our performance evaluations show that unslotted operation with variable burst size performs better than with fixed size and almost as good as slotted operation with fixed size. Simulations with more realistic traffic models like general independent arrival distributions or real burst traffic assembled from self-similar IP traffic show that the analytical Poisson models with fixed and with uniformly distributed burst length are very useful as performance bounds.

Future work should extend the models towards network dimensioning, evaluate the performance to a wider set of scenarios, e.g., non-uniform traffic, and include QoS differentiation.

References