Investigation of the Distributed Antenna Scheme for Multi-cell Environment in TDD-CDMA Systems

PENG Mugen, WANG Wenbo

Wireless Signal Processing & Network Lab, Center for Wireless Communications, P.O.Box 93, Beijing 100876, P.R. China
Tel: ++86-10-62282977, Fax: +86-10-62282921
Email: pmg@bupt.edu.cn

Abstract: In this paper, both uplink (UL) and downlink (DL) performances are investigated for the TDD-CDMA system when employing the distributed antenna (DA) technology in the Macro multi-cell scenarios. In UL, both the DA and the multi-user detection (MUD) themes can suppress the interference and improve the capacity. Even the simple DA structure (called fixed DAS) can provide a high macro-diversity gain. Meanwhile, MUD technique is adopted to mitigate the intra-cell interference. In our work, the performance improvement due to DA and MUD are evaluated and compared. In order to improve the DL capacity, the advanced DL transmission mechanism, based on the virtual cell (called virtual DAS), is proposed. An advanced TDD-CDMA static system simulator for DA is built, and the simulation results show that both the capacity and coverage gain in UL are significant due to the receiving diversity gain sourced by the DA. In addition, the UL performance gain is related to the antenna element number and the MUD factor. However, in DL, due to the huge adjacent antenna’s interference, the fixed DAS can’t provide any capacity and coverage gain. The proposed virtual DAS provides higher capacity gain and wider coverage range than the fixed DAS does.

Keywords: Distributed Antenna; TDD-CDMA; Multi-User Detection, Capacity, Coverage

1. INTRODUCTION

3G systems, based on the code division multiplex access (CDMA), will support not only voice service, but also a wide range of broadband services such as Video and Internet traffic. Compared to FDD (Frequency Division Duplex) mode, TDD (Time Division Duplex) mode can change the uplink and downlink resources according to the traffic demands to match the asymmetric and bursty nature of data traffic. Therefore, TDD can provide higher data rate and more efficient use for asymmetric services[1].

Many advanced techniques, such as smart antenna (SA), multi-user detection (MUD) and advanced resource management schemes (RRM), are proposed to improve the system’s performance and support the high speed packet transmission. Recently, distributed antenna (DA) has been one research focus because it can extend the coverage and increase the capacity together, especially the effective solution for the coverage hole, by utilizing multiple
antenna elements (AE) [2]. The main advantages of DA are that the users receive multiple versions of the same signal from different directions, which provides the diversity protection against shadowing and distance-dependent propagation losses [3].

Many performance investigations about the distributed antenna system (DAS) have been presented. For example, [4] shows the performance of the generalized DAS in a multi-cell network. The performance analysis of DAS in the indoor environment for WCDMA is presented in [5]. However, the investigation based on the combing multi-user detection (MUD) scheme and DA in uplink for TDD-CDMA is still seldom. Downlink (DL) performance is still lacked in the published paper because the additional interference to the desired receiver due to the incremental AE is high. All DASs presented in the above papers are categorized as fixed DAS. However, in [2], a virtual DAS is introduced, but no any performance results are shown. Consequently, some advanced performance analysis for DAS must be proposed. The difference between fixed and virtual DAS should be evaluated.

In this paper, both UL and DL performance analysis for DAS in the multi-cell TDD-CDMA systems are presented firstly. The theoretical UL and DL performances due to DA are shown. There is some difference between UL and DL, and the fixed DAS is adopted for UL to improve the performance, while the virtual DAS is proposed for DL. The simulator building is based on the Monte Carlo mechanism for the macro environment. The simulation results demonstrated that DA can extend the coverage and improve the capacity in UL, which are related to the MUD factor and the number of antenna element in DAS. The virtual DAS configuration can mitigate the interference and enhance the interesting power level in DL.

2. Distributed Antenna Model

The distributed antenna system (DAS), also known as the “bunch” concept in FRAMES project, is an alternative to the conventional cell splitting approach for achieving increased spectral efficiency and reliable uniform coverage due to avoiding the increased handover ratio and planning complexity. Conventional cell splitting only reduces the cell radius, not the separation between co-channel cells. With the DA, a cell consists of a number of zones, each covered by an antenna element (AE) connected to the central station (CS).

In a DA system, many simple AEs are connected to the CS (similar to the based station (BS) in 3G) by the optical fiber with enough distance separation, which makes communication cheap and enables burst synchronization within all AEs in one CS. There is no specified signal processing at the AE side. In the uplink, the signal of user equipments (UEs) is received by all these AEs in one CS. The basic advantages of a DA system can be gauged as a regular sub-cell structure. In Fig. 1, the DAS with sub-cell configuration is shown. A single cell with a single omni-direction antenna is sub-divided into 7 sub-cells. It is assumed that there is no overlay between the coverage of individual sub-cells. In each sub-cell, there is one AE, and the AE is equipped with a transceiver device, which converts the radio frequency signal to and from the digital intermediate frequency signals. The intermediate frequency signal is transmitted to the CS.

The advantage of DAS can be categorized as: (1) Lower transmission power level; (2) less interference to/ from other cell or other system; (3) higher capacity and (4) larger coverage range. The TDD-CDMA system is strictly interference limited. Estimating the amount of supported traffic per CS for UL and DL is very important for allocating the
resource radio and making system robust. In UL, load estimation is based on the received power in each AE and combing in CS, while the DL load of the cell is determined by the transmission power in each AE and jointed in the desired UE.

For uplink transmission, all the AEs in one CS can simultaneously receive signals from an UE, which enables the different site diversity at the CS, allows reduction of the uplink power levels and extend the cell range. In the downlink, if all signals from the AEs, including intra-CS and inter-CS, are received, the interference is very high, and the signal quality of the desired UE is not even good as only the conventional cell (only one AE per base station). The optional solution is that only these AEs with the lowest path gain to the desire UE is used in order to reduce the generated interference. Consequently, the CS, to which the serving AEs for the desired UE is connecting, is variable. There is no fixed CS concept. i.e. CS is virtual and the serving cells dominated by the CS is also virtual[2]. In Fig. 2, the virtual DA for DL is shown. It is assumed that the number of AEs for each virtual CS is 3.

In this architecture (called virtual DAS), virtual CS is the essential. Compared to the fixed DAS in UL, it is more difficult to control and detect. However, it can improve the DL performance and suppress the interference.
3. Capacity Model

In this paper, DAS is assumed as one that has a total N AEs spaced by large distance. Each AE has only 1 antenna. Meanwhile, no advanced multiple antenna schemes (smart antenna and multi-input and multi-output) is considered. The transmission and received signals in each AE have independent macroscopic fading as lognormal and distance dependant path-loss.

3.1. UL Capacity Model

On UL, many UEs access to one AE simultaneously, and each UE connects to several AEs in the serving CS. The theoretical spectral efficiency for the TDD-CDMA UL relates the C/I of user i to the received power of the desired signal in the AE j (P_{ij}). Additionally, it also relates to the total interference generated by those users that are connected to the same AE (I_{intra_k}) and from other AEs or other operators (I_{inter_k}), relates to the thermal backgroung noise P_0 as well.

$$\left(\frac{C}{I}\right)_i = \frac{1}{K} \sum_{k=1}^{K} \left(1 - \beta\right)(I_{\text{intra}_k} - P_{ik}) + I_{\text{inter}_k} + P_0$$

In above equation, β is an interference reduction factor due to the use of interference cancellation method, for example, MUD in UL. $\beta=1$ means an ideal MUD, while $\beta=0$ means no MUD method is adopted, i.e., traditional rake receiver is used in the CS side for the signal of AE k.

Compared with the conventional omni-directional cell, the SIR in DAS can be expressed as the macro-diversity effects:

$$\left(\frac{C}{I}\right)_k = \sum_{i=1}^{K} \left(\frac{C}{I}\right)_ik$$

where K is the average number of AEs in one CS, and:

$$\left(\frac{C}{I}\right)_ik = \frac{P_{ik}}{1 - \beta(I_{\text{intra}_k} - P_{ik}) + I_{\text{inter}_k} + P_0}$$

If perfect power control is assumed in each AE, the target of C/I for the CS is set (C/I)$_{\text{target}}$, then the average target C/I for each AE is ρ=$(C/I)_{\text{target}}/K$. According to [6], the UL satisfied UE number N is determined by ρ, Multi-User-Detection (MUD) factorβ, background noise rising (BNR) and the ratio of other cell to own cell interference j:

$$N_{DAS} = \frac{[1 + \rho(1 - \beta)] * (BNR - 1)}{\rho[1 + j + (1 - j - \beta) * (BNR - 1)]}$$

And the UL load factor η can be expressed as:

$$\eta = \frac{(1 + j - \beta) * (BNR - 1)}{1 + j + (1 - j - \beta) * (BNR - 1)}$$
While the capacity for the conventional omni-directional system can be expressed as:

$$N_{BS} = \frac{(1+K\rho(1-\beta))(BNR-1)}{K\rho[1+j+(1+j-\beta)(BNR-1)]}$$ \hspace{1cm} (6)

Comparing with equation (4) and (6), it can know that the capacity gain from the DAS is less than K but bigger than 1 when the same load η is assumed to be the same (i.e. BNR is same according to the equation (5)). Note that there is some difference between DAS and the omni-directional system in the value of parameter j because j is determined by the coverage range of antenna, the serving total UE number in the defined cell range, and so on.

3.2. DL Capacity Model

For DL dimensioning, it is important to estimate the total transmission power required in both AE and CS sides. The estimation operation should be based on the average transmission power for every UE, not related to the maximum transmission power for the cell edge shown by the link budget. There is no significant difference between UL and DL in the capacity and load analysis.

It is supposed that the UE are currently in the system having “exactly the minimum average C/I” requirement for each service, i.e. perfect power control make the system capacity largest. The link quality for the downlink i^{th} UE in cell m for the conventional omni-directional system can be expressed as:

$$\frac{P_{mi}/L_{mi}}{(1-\alpha)P_{txTotal}_m/L_{mi} + \sum_{n=1, n\neq m}^{N} P_{txTotal}_n/L_{mi} + P_0} = \rho_i$$

where P_{mi} is the transmission power at m^{th} cell for the i^{th} UE; L_{mi} is the path loss from the home cell m to UE i, while L_{mi} is the path loss from the base station (BS) m to UE i. N is the number of BSs, and $P_{txTotal}_k$ is the total transmission power of m^{th} BS. α is the non-orthogonality factor, when downlink is full orthogonal, $\alpha=1.0$. According to [7], the DL load factor η can be defined as:

$$\eta = \sum_{i=1}^{N_{UE}} \rho_i \cdot [(1-\alpha) + \mu]$$

where μ is the average ratio of other cell to own cell interference for DL all over the UEs. The total number of serving UEs in one CS is assumed as the same and set to N_{UE}.

For the DAS with fixed CS, there are several fixed interesting AEs transmitting signal to the desired UE simultaneously, the link quality for the downlink i^{th} UE can be expressed as:

$$\rho_i = \frac{\sum_{k=1}^{K} p_{mk} / L_{mk}}{(1-\alpha)\sum_{k=1}^{K} P_{txTotal}_mk / L_{mk} + \sum_{n=1, n\neq m}^{N} \sum_{k=1}^{K} P_{txTotal}_n / L_{mk} + P_0}$$
Compare equation (7) with equation (9), there is no much difference between the link qualities for the two systems in DL, except that the interference comes from N BSs in the conventional system, instead of N*K in the DAS. In additional, the received interesting power is the sum of signal from the several AEs in the serving CS. Consequently, DA technique can’t imply high capacity gain and even provide lower DL capacity.

In order to improve the DL capacity, some advanced interference cancellation techniques are applied, such as the directional antenna, smart antenna and Milti-Input and Milti-Output (MIMO) can be deployed in the AE side. Furthermore, advanced dynamical power allocation schemes according to the condition of AEs should be adopted in the CS side.

If the virtual DAS is adopted, the value of interference from the AEs in the adjacent virtual CS is much less than that of the non-orthogonal interference from the same CS and can be ignored. The equation (9) can be near expressed as:

\[
\rho_i = \frac{\sum_{k=1}^{K} p_{mk} / L_{mk}}{(1 - \alpha)\sum_{k=1}^{K} P_{txTotal_{mk}} / L_{mk} + P_0}
\]

\[(9)\]

4. System level simulator

In order to evaluate the capacity of the DAS system, an advanced static TD-SCDMA system level simulator is used to evaluate the system performance according to[8]. A simulation consists of several simulation steps (snapshot) with the purpose of covering a large amount of all possible UEs placement in the network. In each simulation step, a single placement (amongst all the possible configurations) of the UEs in the network is considered. A simulation step (snapshot) consists of mobile placement, pathloss calculations, power control and results collecting.

4.1. Deploy model

In our work, hexagonal macro scenario is considered. There are 16 cells in the environment, which is based on the Wrap-Around concept. In order to evaluate the performance of DAS, the cell splitting method is considered. Two models are focused: 3-AE and 7-AE, i.e. every cell can be divided into several sub-cell, in where there is one AE located. In Fig.3 (a), the 3-AE model is shown, while Fig.3 (b) gives the structure of 7-AE model.

- (a) 3-AE in each cell
- (b) 7-AE in each cell

Fig. 3 DA structure
4.2. Frame structure
There are 7 traffic time slots in each frame, which is according to the sub-frame structure of TD-SCDMA. The 1st time slot is dedicated for downlink, in which the Broadcast Channel (BCH) is mapped into the primary common control physical channels (P-CCPCHs), which is shown as Fig. 4. The following 3 time slots are used for uplink and the other 3 time slots are occupied by downlink in the condition that only symmetric traffic is supported. If unsymmetrical traffic is involved, slow DCA is efficient.

4.3. Propagation model
This model, is obtained from [8], is applicable for the test scenarios in urban and suburban areas outside the high raise core where the buildings are of nearly uniform height. The formula is:

\[
L = 15.3 + 37.6 \log_{10}(d)
\]

where \(d\) is the average separation between the desired UE and the corresponding AE in meter; and \(L\) is the pathloss in dB.

Minimum coupling loss (MCL) in the simulation scenario between different transmitters and receivers is –38 dB.

4.4. Mobility and Traffic model
UEs are uniformly distributed within the center cluster at the beginning of the simulation. Mobility model is a pseudo random model according to the Vehicular mobility model in the suburban outdoor area, and 120 [km/h] velocities are assumed. Each call is generated according to a Poisson process and its holding time is generated by an exponential distribution with a mean value of 120 [s].

4.5. Fading model
The long-term (Log-Normal) fading in the logarithmic scale around the mean path loss \(L\) dB is characterized by a Gaussian distribution with zero mean and 12.0 dB standard deviation. Adjacent values of fading process are correlated. The Correlation distance is 5.0 meters. Furthermore, the slow fading is correlated from Node B to Node B. The correlated fading formula is given as:

\[
S(j,k) = \sigma_{LN} \left(\sqrt{C_{\text{site}} s_1} + \sqrt{C_{\text{sector}} - C_{\text{site}}} s_2(j) + \sqrt{1 - C_{\text{sector}}} s_3(j,k) \right)
\]

where \(C_{\text{site}}\) is correlation between sites. \(C_{\text{sector}}\) is correlation between sectors of the same site. \(\sigma_{LN}\) is the standard deviation of Log-Normal shadowing. \(s_1, s_2\) and \(s_3\) are normal deviates.
In order to properly support radio resource management algorithm studies, the multi-path propagation environment has to be modeled and implemented in the simulator. If using the some spread spectrum techniques, the radio receiver can separate several multi-path components. Each multi-path component has its own fast fading process that may be totally uncorrelated or partly correlated to other paths. In our simulations, the number of multi-path components is 1 and Jakes model is used.

4.6. Simulation Parameters

The parameters used in hexagonal macro environment simulations are based on the TD-SCDMA system and listed in the following table. Note that only one UL slot and one DL slot is considered in this simulation. All the parameters are from the link level simulation results of [9].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum total transmission power of AE (dBm)</td>
<td>34</td>
<td>Minimum transmission power of AE (dBm)</td>
<td>4</td>
</tr>
<tr>
<td>Maximum total transmission power of UE (dBm)</td>
<td>21</td>
<td>Minimum transmission power of UE (dBm)</td>
<td>-49</td>
</tr>
<tr>
<td>BS Receiver noise floor (dBm)</td>
<td>-106</td>
<td>Number of UEs</td>
<td>400</td>
</tr>
<tr>
<td>Number of BSs</td>
<td>64</td>
<td>MS Receiver noise floor (dBm)</td>
<td>-104</td>
</tr>
<tr>
<td>MUD factor</td>
<td>Variable</td>
<td>Orthogonality factor</td>
<td>0.78</td>
</tr>
<tr>
<td>C/I UL Target (dB)</td>
<td>-3.5</td>
<td>C/I DL Target (dB)</td>
<td>-3.5</td>
</tr>
</tbody>
</table>

4.7. Power Control Models

Power control (PC) consists of open loop PC, inner loop PC and outer loop PC in both UL and DL. In our work, since mobility of MS is not taken into account, open loop PC is adopted for admission control, while perfect PC is used instead of inner loop and outer loop PC.

UL open loop transmission power of UE in the admission control procedure is defined as:

\[P_{UE} = PL + I_{total} + C/I_{tar} \] \hspace{1cm} (13)

where \(P_{UE} \) is the transmission power level in dBm, and \(PL \) is the path loss from UE to the serving base station in dB. \(I_{total} \) is the total interference of base station in dBm. \((C/I)_{tar} \) is the \(C/I \) UL target in dB.

In DL, open loop PC is used to set the initial power \(P_{new} \) and is calculated by the following equation:

\[
P_{new} = \left(\frac{C}{I} \right)_{tar} \star \left(\alpha * P_{BS_i} + \sum_{j=1, j \neq i}^{N} \frac{P_{BS_j}}{PL_j} * PL_i + P_N * PL_i \right)
\] \hspace{1cm} (14)

where \(P_{BS_i} \) is the total transmission power level of BS \(i \), and \(PL_i \) is the path loss from the serving BS \(i \) to MS. \((C/I)_{tar} \) is the \(C/I \) DL target.
5. Simulation Results

Fig. 5 shows the UL performance is related to the radius of cell based on the number of various AEs. It is assumed that MUD factor in UL is set 0.78. The performance metric is expressed as the outage, which means the ratio of the satisfied UE number to the total serving UE number. From the simulation results, it can be found that more AEs in one cell can provide the better UL performance. In addition, the UL performance (outage) degrades when the radius increases. This happens because that the interference becomes high when the cell ranges increase. Consequently, more AEs can extend the system’s coverage and improve the transmission quality.

Fig. 6 shows the relation of UL capacity to the value of MUD factor based on the number of AEs. It is assumed that the cell radius is 577m, and the figure suggested that the UL performance become better with the MUD factor increasing. The reason is that the intra-cell interference is mitigated due to utilizing the MUD technology in UL. With the value of MUD factor higher, the interference from the intra-cell is suppressed more and the UL performance becomes better. The figure also shows that more AEs can provide better UL performance and higher coverage range.

According to the equations (4) and (6), the theoretical analysis shows that the UL capacity gain is bigger than 0 but less than the number of AEs. The simulation results show that the performance of 3-AE model is about 1.5 times better than that of 1-AE model, while about 2 times for 7-AE model.

In downlink, the performance of adopting the fixed DAS is shown in Fig. 7 (a). In the fixed DAS, more AEs source more interference but less macro-diversity gain. According to equation (9), there is an optimum AE number to obtain the best DL performance, which is set 3 in this simulation case.

More AEs in one cell will generate the more intra-cell interference and degrade the performance. However, the virtual DAS structure will not arouse the additional intra-cell interference from the AEs but provide the high Macro diversity gain.

When adopting the virtual DAS architecture, the DL performance results are shown in Fig. 7 (b). In this figure, when the number of AE is 1(AE=1), it means the distributed antenna scheme is not adopted and the traditional BS architecture is deployed. The simulation results show that the virtual DAS can improve the DL performance prominently with the number of AEs. More AEs can provide both the macro diversity and less interference.
6. Conclusions

In order to improve the capacity and extend the coverage, the fixed DAS is proposed for UL in this paper. While in DL, the performance gain is not high when deploying the fixed DAS due to the impact of generating the additional interference sourced by the new AEs is heavier than the diversity gain sourced by the new AEs. Consequently, the virtual DAS is presented for DL to suppress the intra-cell interference and enhance the macro diversity gain. The simulation results show that the virtual DAS can provide higher performance gain than the fixed DAS in DL. Furthermore, the performance gain from both the fixed DAS in UL and the virtual DAS in DL increases with the number of AEs.

REFERENCES

[2] Shidong Zhou; Ming Zhao, etc. "Distributed wireless communication system: a new architecture for future public wireless access", Communications Magazine, IEEE , Volume: 41 , Issue: 3 Pages:108 - 113