Comparison of the Wavelength Converter Sharing Schemes with Burst Splitting

YAO Mingwu, LIU Zenji and WEN Aijun

Authors are with the National Key Laboratory on Integrated Service Networks (ISN), Xidian University, Xi’an, China
Detailed Address: No.2 Taibai Road, Xidian Univ. POB 119, Xi’an China 710071
e-mail Address: mwyao@xidian.edu.cn, zjliu@xidian.edu.cn, ajwen@xidian.edu.cn

Abstract: Four burst splitting and/or segmentation algorithms in the Optical Burst Switching (OBS) node with shareable Tunable Wavelength Converters (TWCs) are proposed, and their performances of data loss probability are analyzed. These algorithms include COCP (Convert-Only-the-Collided-Part), COCP+PDP (COCP and Partial Discard Permitted), FirstWC+BS (Wavelength Conversion First and BS permitted) and COCP+BS (COCP and BS permitted). All algorithms described can be implemented on the same switching hardware and with similar complexity. Simulation Results show that the data loss probabilities of these algorithms are smaller than the general whole conversion algorithm for sharing TWCs, and the COCP+BS is the best among the four in most cases.

Keywords: Burst splitting and segmentation, Optical burst switching, TWC sharing schemes

1. INTRODUCTION

The exponential growth of the Internet and data services requires a new infrastructure of the underlying optical networks. Future optical networks should be able to carry the huge and dynamic data loads and utilize the enormous bandwidth provided by the DWDM techniques efficiently. The Optical Burst Switched network (OBS, see [1]-[5]) is thought as a promising solution to meet the challenge. In OBS networks, a great deal of user data packets, such as IP packets or ATM cells with the same destination and/or service class are assembled into a large Data Burst (DB), and the DB will be associated with a Burst Control Packet (BCP) which is sent ahead of DB on an isolated controlling wavelength. The contents in the BCP will be used to configure the switching fabrics and reserve a wavelength for a certain period of time in the intended output fiber link for the pending DB. In such a way the DB is able to pass through the switching node without O-E conversion and vise versa.

As shown in [1] and [2], collisions of DBs in Core Nodes (CNs) will occur if two or more DBs contending for one output wavelength. Resolving such collisions often involves wavelength conversion in the wavelength domain, deflection routing method in the space

This work was supported by NSFC General Project grant No.90104012
domain and buffering by the use of Fiber Delay Lines (FDLs) in the time domain. Among them wavelength conversion is thought as the most effective and therefore has been widely studied. To reduce the cost of the switching nodes shareable Tunable Wavelength Converters (TWC) pools are adopted [6]. Two architectures of such sharing schemes for Optical Packet switched networks, Share-Per-Link (SPL) and Share-Per-Node (SPN) are proposed and studied in [7] and [8], and the results are applicable to OBS networks with JET protocols [2].

On the other hand, based on the fact that DBs are composite of thousands of upper layer data units, methods of burst segmentation in OBS networks are proposed [3]-[4]. According to these methods, a switching node is permitted to drop part of the blocked DB to reduce the loss of upper layer packets. Performance of the BS (Burst Segmentation) protocol has been theoretically analyzed in [5] and it shows the method will drop much less data packets when the switching node has full wavelength conversion capability.

Then how much benefit can be obtained when a switching node utilizes BS and TWC sharing at the same time? And how do the two jointly work? In this paper we propose four algorithms of burst splitting/segmentation in a TWC shareable OBS switching node. A common trait of them is permitting a DB to be split into two or more segments, like in the BS protocol. We will describe in detail the four algorithms in section 2 respectively. In section 3 the performances of these algorithms are studied by means of simulation, and the results are analyzed. Section 4 concludes the paper.

![Fig.1. Illustrations of scheduling cases in CWB (a), COCP (b) and COCP+PDP (c).](image-url)
2. ALGORITHMS DESCRIPTIONS

In an OBS core switch having TWC sharing capabilities but no FDL, each egress optical link port has an exclusive shareable TWC pool for all its wavelengths to use (as in SPL), or the whole node possess a single common TWC pool for any wavelength in any link to share (as in SPN). In both scenarios, a burst from an ingress link will first try to use the same wavelength it comes from to pass through the destined egress port. If the time window required on this ‘original wavelength’ is occupied or reserved by a previous burst, it will be wavelength converted wholly to another idle wavelength in the same output link, as shown in fig.1-(a), and the burst will be entirely dropped if it fails to find any available wavelength. We call such conventional type of switching Convert-Whole-Burst (CWB) in order to distinguish it from the four algorithms discussed in this paper. The performance of CWB can be analyzed with continuous time Markov Chains [9].

If a burst can be split into two or more parts when it encounters contention on the initially selected wavelength, the collided part could be wavelength converted or discarded while the unaffected part remains in the original wavelength. In such a way the data loss rate will be reduced and the occupation period of converters will be saved. Alternatively the collided burst could be first wholly converted and then partially dropped as in BS. Such simple guidelines lead to several methods of conversion/discard policy in case of collision.

In the paper, we assume the offset time between BCPs and the pending DBs arriving at the switching node be the same, and the burst scheduling scheme is similar to LAUC [10]. Pseudo codes will be used to describe the algorithms for clarity and simplicity. To write the codes concisely some symbols are defined as below.

\(w_j \): wavelength \(j, j=1, 2, \ldots, W \);
\(c_k \): shareable tunable wavelength converter \(k, k = 1, 2, \ldots, C \);
\(t_{wi} \): the latest available time of wavelength \(w_i \);
\(t_{ci} \): the latest available time of wavelength converter \(c_i \);
\(t_{we} \): the earliest available time of all wavelengths;
\(t_{ce} \): the earliest available time of all wavelength converters;
\(\max(t_1, t_2) \): the maximum between \(t_1 \) and \(t_2 \);
\(B_i(t_a, t_d, w_i) \): a burst comes on wavelength \(w_i \), and it starts at time \(t_a \) and ends at time \(t_d \);
\(B_o(t_a, t_d, w_i) \): a burst is transmitted on wavelength \(w_i \), and it starts at time \(t_a \) and ends at time \(t_d \);
\(B_c(t_a, t_d, c_k) \): a burst arriving at time \(t_a \) and will depart at time \(t_d \) need to be changed to an idle wavelength via converter \(c_k \);
\(B_i(t_a, t_d, ?) \): an under processing burst which starts at time \(t_a \) and ends at time \(t_d \), and the following operations are pending.

2.1. COCP

To further reduce the use of TWCs in a switching node, an algorithm named Convert-Only-the-Collided-Part (COCP) has been proposed in our previous work. According to COCP, when a burst is blocked on its original wavelength, it is split into two smaller bursts at the very point where the time window overlapping ends. Only the former part, which is
totally collided, is converted onto an idle wavelength other than the whole original one, hence the occupation period of the TWCs will be greatly reduced (see fig. 1-(b)). The whole burst will be dropped if the collided part fails to be reallocated a usable wavelength or cannot be converted for lacking of TWC. The pseudo codes describing the processes are as follows.

\[
\begin{align*}
B_i(t_a, t_d, w_i) & \text{ comes;} \\
\text{if } (t_a \geq t_{wi}) & \text{ then send } B_i(t_a, t_d, w_i) \text{ as } B_o(t_a, t_d, w_i); \\
\text{else if } (t_d \leq t_{we}) & \text{ or } (t_a \leq t_{ce}) \text{ then discard } B_i(t_a, t_d, w_i); \\
\text{else} & \\
& \text{begin } /* begin 1 */ \\
& \text{find } c_k \text{ which meeting } t_a \geq t_{ck}; \\
& \text{find } w_j, j \neq i, \text{ which meeting } t_a \geq t_{wj}; \\
& \text{if } (t_d \geq t_{wi}) \text{ then } \\
& \text{begin } /* begin 2 */ \\
& \text{split } B_i(t_a, t_d, w_i) \text{ into } B_c(t_a, t_{wi}, c_k) \text{ and } B_i(t_{wi}, t_d, w_i); \\
& \text{end } /* end of begin 2 */ \\
& \text{end } /* end of begin 1 */ \\
\end{align*}
\]

2.2. COCP+PDP

A straightforward improvement of COCP is to permit the blocked DB to be partially discarded. That is to say, if the collided part cannot be converted onto an idle wavelength or there is no available wavelength on the same output link, it will be dropped while the unaffected part remained on the original wavelength (see fig. 1-(c)).
modify the available times of each converter;
used wavelength and wavelength converters;
change t_{we} and t_{ce} accordingly;

\[B_i(t_a, t_d, w_i) \] comess;
if $t_a >= t_{we}$ then send $B_i(t_a, t_d, w_i)$ as
$B_o(t_a, t_d, w_i)$;
else if $t_d <= t_{we}$ or $t_d <= t_{ce}$ then
discard $B_i(t_a, t_d, w_i)$;
else
begin /* begin 1 */
if $(t_{wi} = t_{we}$, i.e., w_i is one of the
earliest available wavelengths)
begin
split $B_i(t_a, t_d, w_i)$ into $B_i(t_a, t_{wi}, ?)$ and
$B_i(t_{wi}, t_d, w_i)$;
end
send $B_i(t_{wi}, t_d, w_i)$ as $B_o(t_{wi}, t_d, w_i)$;
discard $B_i(t_a, t_{wi}, ?)$;
else
begin
change $B_i(t_a, t_d, w_i)$ into $B_i(t_a, t_{wi}, ?)$;
find c_j, which meets $t_{ck} = t_{ce}$;
find w_j, $j != i$, which meets $t_{wj} = t_{we}$;
$T := \max(t_{wi}, t_{ck})$;
if $t_a >= T$
begin
begin
end
end
end

Fig. 2. Illustrations of scheduling cases in FirstWC+BC (a) and COCP+BS (b).

2.3. FirstWC+BS

When an incoming burst is blocked on the original wavelength, in the FirstWC+BS algorithm it will be first wavelength converted onto the earliest available wavelength. If block happens again in the second wavelength, the BS operation will be performed to allow only the unaffected part to pass through the output link. Note that in this case the blockage is caused by either wavelength contention or TWC contention. If a burst comes at the moment t_a and it needs to be wavelength converted, and at time t_{wi} there will appear an idle wavelength and at time t_c there will be one TWC available, and if $t_a < t_{wi} < t_c$, the burst will be dropped from t_a to t_c if the burst lasts longer than t_c. If $t_a < t_c$, then the drop will begin from time t_a to t_{wi}, i.e., from the beginning of the burst to the time both wavelength and TWC become useable. Fig. 2-(a) shows the case that the convert-time T is later than the earliest wavelength available time t_{we}, and the detail decision procedure of transmission and/or discard is described bellow.
change $B_i(t_a, t_d, ?)$ into $B_c(t_a, t_d, c_k)$; send $B_c(t_a, t_d, c_k)$ as $B_o(t_a, t_d, w_j)$; discard $B_i(t_a, T, ?)$; end

else begin
split $B_i(t_a, t_d, ?)$ into $B_i(t_a, T, ?)$ and $B_c(T, t_d, c_k)$; send $B_c(T, t_d, c_k)$ as $B_o(T, t_d, w_j)$;
discard $B_i(t_a, T, ?)$; end

end /* end of begin 1 */

modify the available times of each used wavelength and wavelength converters; change t_w and t_c accordingly;

2.4. COCP+BS

The difference between COCP+BS and FirstWC+BS lies in that if a DB has been blocked on its original wavelength, only the collided part will be wavelength converted other than the whole one. And this converted part will be segmented and partially discarded once again if blockage still occurs on the earliest available wavelength, as shown in fig. 2-(b). This procedure is similar to that in COCP+PDP, while in the latter the converted part will be discarded in blockage without segmentation the second time.

$B_i(t_a, t_d, w_i)$ comes; if ($t_a >= t_{w_i}$) then send $B_i(t_a, t_d, w_i)$ as $B_o(t_a, t_d, w_i)$; else if ($t_d <= t_{w_e}$) or ($t_d <= t_{c_e}$) then discard $B_i(t_a, t_d, w_i)$; else begin /* begin 1 */
if ($t_d <= t_{w_i}$) begin
change $B_i(t_a, t_d, w_i)$ into $B_i(t_a, t_d, ?)$; denote $B_i(t_a, t_d, ?)$ as $B_i(t_a', t_d', ?)$; end
else begin
split $B_i(t_a, t_d, w_i)$ into $B_i(t_{w_i}, t_d, w_i)$ and $B_i(t_{w_i}, t_d, ?)$; denote $B_i(t_{w_i}, t_d, w_i)$ as $B_i(t_{w_i}, t_d', w_i)$; send $B_i(t_{w_i}, t_d, w_i)$ as $B_o(t_{w_i}, t_d, w_i)$; end
end /* end of begin 1 */

find w_j, $j != i$, which meets $t_{w_j} = t_{w_e}$; T := $\max(t_{w_j}, t_{c_k})$;
if ($t_a >= T$)
begin
change $B_i(t_a', t_d', ?)$ into $B_c(t_a', t_d', c_k)$; send $B_c(t_a', t_d', c_k)$ as $B_o(t_a', t_d, w_j)$; end
else begin
split $B_i(t_a, t_d', ?)$ into $B_i(t_a', t_d, T)$ and $B_c(T, t_d, c_k)$; send $B_c(T, t_d, c_k)$ as $B_o(T, t_d, w_j)$; discard $B_i(t_a, T, ?)$; end
end /* end of begin 1 */

modify the available times of each used wavelength and wavelength converters; change t_{w_e} and t_{c_e} accordingly;
3. SIMULATION RESULTS

To analyze and compare the performances of the algorithms described above we made simulative switching node models of SPL and SPN architecture respectively. The switching node has the same number of wavelengths in every input and output optical link, and the wavelengths are from a same set, i.e., any input wavelength has an equivalent output peer in an output fiber link. Bursts would come from any input wavelength and require any output link in equal chances. The bursts arrive at the switching node as a Poisson flow, i.e., with exponentially distributed arrival intervals. And the burst lengths are also exponentially distributed. Such service settings are suitable in a backbone core node, and are usually adopted in other related literatures. In the simulations the packet boundary effects in DB splitting is neglected for simplicity, as in [5]. For the burst size is often about 1000 or more times of a data packet, this omission will not bring about too much error.

Fig.3-4 show the DLPs of each algorithm in an SPL switching node with 16 wavelengths in every output optical link, and loaded with light (0.25) and heavy (0.75) data bursts. Under both service loads the DLPs of each algorithm continually decrease with the increasing of total number of shareable TWCs per output link, consistent with analyses and simulation results in some published literatures.

In all figures, the DLP curves of CWB and the COCP start from the same point when there is no TWC usable and reach to almost the same level when TWCs are increased to the same number of wavelengths, and in COCP the DLP decreases faster than in CWB, for its saving of TWCs. The DLPs in both ends of each COCP and CWB curves are coincident with those given by the *Erlang B* formula, which is applicable when the number of TWCs is zero or the same number of wavelengths.

![Fig. 3 Data Loss Probability vs number of shareable TWCs per link in an OBS SPL switch with 16 data transmitting wavelengths in each output link. The service load is 0.25.](image-url)
The DLP curves of other three algorithms start nearly from a common level when no TWC is used in the output link, which is coincident with the value calculated by equation (4) in [5] for BS when \(k = 1 \). Their performances are generally better than CWB and COCP, both of which do not allow discarding of any burst partially. However, along with the increment of shareable TWCs, only in FirstWC+BS and COCP+BS the DLP can reach to the loss level yielded also by equation (4) in [5] which requires the fully wavelength conversion capability, indicating better combinations of BS and TWC sharing. On the other side, as a simple enhancement of COCP, COCP+PDP brings about a steady gain to COCP – the DLP curve of COCP+PDP is just like lowering the curve yielded by COCP. It is mainly because that such polices will reduce the granularity of the time gaps between concatenated DBs in an OBS switching node with no data buffering devices.

![Graph showing Data Loss Probability vs number of shareable TWCs per link in an OBS SPL switch with 16 data transmitting wavelengths in each output link. The service load is 0.75.](image)

Fig. 4. Data Loss Probability vs number of shareable TWCs per link in an OBS SPL switch with 16 data transmitting wavelengths in each output link. The service load is 0.75.

Though their performance curves differ much, the algorithms of FirstWC+BS and COCP+BS are not so different. The FirstWC+BS algorithm is a straightforward adaptation of BS protocol into the scenario of TWC sharing. When a burst could be blocked, it will use the earliest available wavelength to transmit as many data as possible, i.e., the blocked burst will be wholly converted if blocked and segmented if blocked again. In COCP+BS, only the collided part of the incoming data burst will be converted in blockage, as in COCP and COCP+PDP, and if this converted part is blocked again it is segmented the second time. This small increase of the complexity in operation brings about a significant decrease of the DLP, as shown in fig. 3-4.

In fig.3-4 we notice also that when the number of TWCs is within a certain range the DLP of FirstWC+BS is higher than that of COCP+PDP (nearly from 0 to 11), and even greater than that of COCP (nearly from 4 to 10). Taking into account the differences of scheduling in these three algorithms, we think this is caused by the fact that when sharable
TWCs are relatively scarce, the loss of data packets (or the collision of bursts) is mainly due to the lack of TWCs other than the lack of wavelengths. Since FirstWC+BS always tries first to convert a blocked burst, when the TWCs are not sufficient this policy will cost more converters and thus incur more data loss. The explanations can be also applied to the results of circled areas in fig.4 and fig.6. In both areas when the input loads are heavy and the TWCs are very scarce (about one per link in average) the data loss rate performance of COCP+PDP becomes the best among the four algorithms.

Fig. 5. DLP vs total number of shareable TWCs in an OBS SPN switch with 4 output links and 8 data transmitting wavelengths in each output link. The service load is 0.50.

Fig. 6. DLP vs total number of shareable TWCs in an OBS SPN switch with 4 output links and 8 data transmitting wavelengths in each output link. The service load is 0.75.
Fig. 5-6 show the DLP curves of each algorithm in an SPN switch under mediate and heavy loads respectively. The switch possesses a common sharable TWC pool for all its four output optical links with 8 wavelengths in each link. As shown by published literatures as well as our previous works, SPN schemes will save more TWCs than SPL schemes. We can draw such conclusions again and observe very similar performance relationships between the four burst splitting/segmentation algorithms as in an SPL switch.

4. CONCLUSION

Although the BS protocols and the TWC sharing schemes are widely studied, their combinations in OBS networks remained unseen. In this paper we propose 4 such combination algorithms and compare the DLP performances of them using simulation methods. These algorithms can be implemented on the same hardware architectures (SPL or SPN). The complexity of controlling is in two aspects, the time comparison operations and the burst splitting/segmenting operations. To the former the four algorithms are in the same scale, while to the latter the complexities lie in whether an algorithm allows bursts to be split more than once. Taking into account that all splitting/segmenting operations can be readily prepared before DBs actually arrive due to the effects of BCPs, we think the splitting of bursts will not be so difficult and costly. As shown in the paper, these algorithms will bring about quite different Data Loss Probability (DLP) in a switching node. Such results can be referenced in analyzing and designing the architectures of OBS switching nodes with sharable TWCs.

Future works would include the study of such methods in a whole network view, such as limiting the size of remained burst and the number of conversions and splitting operations from end to end. And in a realistic view, the success of any BS protocols depends upon the timing acquirement and ultra fast packet delineation techniques in the edge node, which is closely related to this topic and worth further investigation.

REFERENCES