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Abstract—Numerous probing and tomography techniques have
been developed for the Internet. They all either flood the network
with probing TCP connections or require to send additional
probing packets which delays must be precisely measured. In this
paper, we propose a new approach, on the basis of existing TCP
connections and reaching therefore a zero probing overhead. The
foundation of the proposed technique lies in the theory of inverse
problems in bandwidth sharing networks, and the approximation
of Internet and TCP behavior by that of a bandwidth sharing
network. The field of this kind of inverse problems is explored,
and we give a few application to toy networks, either with fixed
population or with elastic traffic.

I. INTRODUCTION

A. Internet Tomography and Network Probing
Tomography is an indirect measurement technique, where

one aims at reconstructing the different components of a
system through the use of any kind of measurement performed
on that system. More specifically, assume that we are given
a set of equations depending on some unknown parameter
(possibly a vector) θ, and governing the behavior of a complex
system. Observing the outputs of the system for some specific
inputs then allows us to infer parameter θ. This technique is
used, for example, in medical imaging: electro-magnetic waves
are sent into a human body, and on the basis of both Maxwell
equations for the propagation of electro-magnetic waves and
the anatomy of a human body, it is possible to determine the
precise condition of the patient.

This paper focuses on network active probing and tomog-
raphy. The main motivation for network tomography is that
the Internet is split in a large number of autonomous systems,
and that a global observation of the network is difficult. The
information obtained by network tomography techniques then
allows both end-users to measure the performance of (part
of) the Internet, and operators to manage and upgrade their
infrastructure with detailed information. Network tomography
is an active research subject, which is addressed for example
of the ACM Sigcomm’s Internet Measurement Conference
(IMC) and the IPPM Working Group of IETF. We will review
existing results in section I-B.

However, most of the known techniques use packet-level
tomography, meaning here that the direct problem predicts
packet level statistics (e.g., the packet delay distribution), and
belong explicitly or implicitly to the field of queueing theory.
Although fruitful, this approach of tomography as ’inverse
problems in queueing theory’ has two main weaknesses:

1) it requires to measure these packet level statistics, which
(depending on the statistics) can be difficult or require
specific equipment (e.g., DAG cards);

2) it is difficult to introduce the natural feedback from TCP
protocol into queueing theory: queueing theory mostly
deals with exogenous arrivals, without internal feedback
process. This means in particular that the sending of
probes can not follow the TCP protocol, and the probes
therefore must be packets dedicated to the measurement
process, which carry no useful data.

From a practical point of view, it would be ideal to perform
network tomography based on TCP flow measurements. It
would enable us in some cases to use already existing TCP
flows, hence reaching the least intrusive measurement process
that is feasible. In the other case, the advantage of TCP flows
is that they are easy to set up, and that flow statistics are easier
to collect than packet level statistics. This paper aims at being
a first step towards this flow-based tomography.

In the next two sections, we review the existing literature
on network tomography and recall the basics of bandwidth
sharing networks. Section II introduce the main concepts of
inverse problems in bandwidth sharing networks. The paper is
then structured in three sections, with increasing complexity.
Section III and IV study tomography of static toy networks,
respectively with a single path and a “triangle network”.
Section V then extends the case of the single path network
to a dynamical number of elastic traffic flows.

B. Related Work

There is a vast literature on Internet tomography. The
reader may consult [1]–[3] as a few classical entry points.
In particular, the determination of link capacities has received
considerable interest, using packet pair techniques [4] or the
relation between round-trip time, probe size and link capacities
[5]. Residual bandwidth and achievable throughput can also
be deduced with statistical techniques [6]. All these techniques
measure packet-level loss and delay time series, with carefully
constructed sequences of probes. Netalyzr [7] and Samknows
[8] use flow-based flooding techniques to measure the achiev-
able throughput on specific paths. Their output however is
limited to the bottleneck of the path.

A few paper also aim at building solid mathematical founda-
tions for network tomography. The choice of optimal probing
sequence for example is discussed in [9], [10], and [11], [12]
present results about theoretically-proven delay tomography.
The author’s PhD [13] contains the results of section III and
IV. Other results in this article are new.



C. Bandwidth Sharing Networks

1) Static bandwidth sharing networks: We give now a short
introduction to bandwidth sharing networks, as introduced in
[14]. Such networks share the bandwidth between competing
flows by maximizing a given utility function among the
feasible allocation. In this paper, we consider the class of α-
fairnesses. Group flows that share the same path and have
an identical weight into a class, the (w, α) fairness utility
function1 Uw,α reads

Uw,α(γ) =
∑
i∈I

niwi
γ1−αi

1− α
,

where I is the set of classes, ni (resp. wi) the number of
flows in (resp. the non-negative weight of) in class i and α
a non-negative (possibly infinite) real number. Note that the
max-min (resp. maximum-throughput) allocation is the limit
of (w,α)-fair allocation when α goes to infinity (resp. α goes
to zero). A classical and important result [14], [15] about
bandwidth sharing networks is that the TCP protocol leads
to a proportionally fair bandwidth allocation (i.e. α = 1).

2) Extension to dynamical network: We follow the elastic
traffic model presented in [16]. For each class i, we assume
that new customers arrive according to a Poisson process with
intensity λi. Each customer of class i requires an amount of
service which is exponentially distributed with mean 1

µi
, and

then leaves the network. At any time, given the number of
customers n = (n1, . . . , nK), we consider that the network
allocates bandwidth as a static bandwidth sharing network
would do, i.e. that it maximizes a utility function. Let then
γi(n) denote the bandwidth allocated to each flow of class i.

Let Ti denote the operator which adds 1 to the ith coordinate
of a vector. The vector n(t), t ≥ 0 defines a Markov process
[16], with transition rates

q (n, Ti(n)) = λi and q
(
n, T−1i (n)

)
= niµiγi(n) (1)

It is also possible to add non-elastic (or streaming) flows
to the model [17]. However, for simplicity of presentation,
this extension will not be considered here, as the results stay
qualitatively the same.

II. TOMOGRAPHY OF BANDWIDTH SHARING NETWORKS

What is an inverse problem in bandwidth sharing networks?
Let us start with an example. Consider one user that starts
downloading a file. This user can measure its long-term band-
width, which is proportionally fair. The user may also start
several TCP connections in parallel, and measure the long-
term bandwidth allocated to these connections, as a function
of the number of parallel connections. Is it possible from these
long-term bandwidths to estimate the server capacities along
the path and the number of competitors, i.e. the number of
competing flows? We will show in section III that for some

1We will abusively write U1(γ) =
∑
s∈S

γ1−αs
1−α when α = 1, instead of

U1(γ) =
∑
s∈S log γs. This is not formally correct, but all computations

remain valid in the limit α→ 1, as well as the final results.

classical utility function, the inversion is possible if the user
knows the topology along the path (e.g., using Traceroute).

Tomography problems can be described depending on a few
criteria. These criteria have been identified in [18] for inverse
problems in queueing theory. For clarity, we will summarize
them quickly in this section, and refer the reader to section 2
of [18] for a more complete description.

A. Direct problem

Bandwidth Sharing Network theory describes the bandwidth
allocation to different flows in a network, as a function
of several parameters. These parameters can be related to
the structure of the network (the number of stations, the
topology and the link capacities) or to the nature of the traffic
(the number of flows in each class, the routes for a static
problem, or arrival processes and service requirement / sojourn
time for elastic/streaming traffic.). The solution of the direct
problem might be either an explicit closed-form allocation,
some equation that is verified by the allocation, or asymptotic
properties of the allocation in some specific settings.

B. Noise

Deviation from ideal assumptions, which we will call here-
after ’noise’, can happen for several reasons:
• the bandwidth allocation algorithm might be unperfect;
• there may be actual measurement noise in the data;
• in the dynamical case, time series obtained from a mea-

surement experiment are by nature finite, and any estima-
tor contains thus a statistical error when the bandwidth
is a random process oscillating around the theoretical
bandwidth allocation (e.g., TCP);

C. Probing actions

The observables are generated through several actions of
the network prober. These actions include the choice of the
probing topology (including point-to-point or multipoint prob-
ing). One can also distinguish between passive probing where
the prober just observes actual flows without perturbing the
network, and active probing where the prober actively set up
some probing flows, and thus interact with the network.

D. Observables and unknown parameters

Observables are the raw data available to the prober and
deriving from the above actions. For bandwidth sharing net-
works, they consist of the times series of measured bandwidth
and the number of probing flows for each class.

Unknown parameters are the parameters of the direct equa-
tion which are not specified, even indirectly, by the model.

E. Intrusiveness, bias and restitution

Probing flows are not identified as such by the network, and
get their fair bandwidth share. They are therefore intrusive to
the system, and a general recommendation is usually to limit
the intrusiveness of the tomography. Intrusiveness might seem
at first glance to make the tomography problem more difficult.
In fact, we will see that it may be useful and can be leveraged
in many cases (see section III-B).



An important effect of intrusiveness is that it affects the
measured performance metrics. For example, the bandwidth
allocated to a single probe flow is not equal to the bandwidth
received by other flows following the same route in absence of
the probe flow. Hence, in order to estimate ground truth (i.e.
the system parameters in absence of probes), there is a need
for a restitution phase, where one reconstructs the ground truth
metrics on the basis of observations of the perturbed system.

F. Identifiability and ambiguity

The information contained in the observables might not be
sufficient to determine a unique ground truth, meaning that
the same observables can stem from different parameters. This
raises a host of identifiability questions.

G. Estimation problems and design of experiment

We mentioned in section II-B that in some cases, the
observables are finite series of a random dynamical system.
The inversion step is then no longer a deterministic problem,
but a problem of statistical estimation. The design of such
estimators, as well as the characterization of their properties
(e.g., variance, asymptotic consistency) is an important issue.

For active probing, the degrees of freedom in how to set up
probe connections opens another level of optimization, which
is called design of experiment.

III. THE STATIC SINGLE PATH CASE

Consider a single static path, as depicted in Fig. 1. The path
consists of K servers (S1, . . . , Sk) in series, where the server
Sj has capacity Cj . There are K + 1 class of users: users of
class 0 use the whole path, and users of class i (1 ≤ i ≤ K)
cross only server Si. Each class i has ni users, and each of
these users receives a bandwidth equal to γi. Additionally,
there are x probes of class 0, using the whole path.

S1 S2 SK

n1

n0

γ1

x

n2 γ2 nK

γ0

γK

γ0

Fig. 1. An example of path.

A. Direct problem

We first describe the direct problem, i.e. the evolution of
the system. The α-fairness here reads

Uw,α(γ) =
1

1− α

[
w0(n0 + x)γ1−α0

+

K∑
i=1

wini

(
Ci − (n0 + x)γ0

ni

)1−α
]
, (2)

where for notation simplicity, when ni = 0, we set

ni

(
Ci − (n0 + x)γ0

ni

)1−α

=

{
0 if Ci − (n0 + x)γ0 ≥ 0 ,

−∞ otherwise .

1) Maximum throughput: If
∑K
i=1 wi1ni>0 > w0, the

maximum utility allocation in such a case is γ0 = 0 and
γi = 1ni>0

Ci
ni

.
Otherwise, it equals

γ0 = min
1≤j≤K

Cj
n0 + x

, γi =
Ci −min1≤j≤K Cj

ni
. (3)

2) Max-min allocation: The only max-min allocation for
this network is

γ0 = min
1≤i≤K

fi(x), γi =
Ci − (n0 + x)γ0

ni
, (4)

where we define fi(x) = Ci
n0+x+ni

for all 1 ≤ i ≤ K.
3) Other α-fair allocations: The parameter α is now

strictly positive and finite. The (w, α)-fair allocation then
verifies the stationary equation

w0

γα0
=

K∑
i=1

wi1ni>0

(
ni

Ci − (n0 + x)γ0

)α
, (5)

which has no closed-form solution in a general case. However,
a solution can be found when all servers have the same
capacity C. The (w, α)-fair allocation then reads

γ0 =
C

n0 + x+ ñ
and γi =

ñ

ñ+ n0 + x

C

ni
(6)

where ñ =

(∑K
i=1 win

α
i

w0

) 1
α

is the “weighted α-sum”.

B. Tomography

1) Maximum throughput allocation: If w0 <∑
1≤i≤K wi1ni>0, the inverse problem is ill-posed. The

bandwidth allocated to the probing path is zero, independently
of the probing intensity. It is therefore easy to identify such
an allocation policy, as it is the only one among the
considered policies that allows starvation of the probing
flows. Unfortunately, the fact that the probing path gets a
zero bandwidth allocation does not allow us to deduce any
parameter. When observing the bandwidth allocated to users
of class i, we can deduce the ratio Ci

ni
, but we can not identify

individually Ci and ni.
In the other case, the allocation is as in (3), and two

observation points (xi, γ0(xi)) are sufficient to determine n0
and min1≤j≤K Cj as follows (assuming x1 < x2):

n0 =
x2γ0(x2)− x1γ0(x1)

γ0(x1)− γ0(x2)

min
1≤j≤K

Cj =
(x2 − x1)γ0(x1)γ0(x2)

γ0(x2)− γ0(x1)
.

2) Max-min allocation: Observe that γ0(x) =
min1≤i≤K fi(x). Several quantities are therefore immediately
non-identifiable. First, one can identify the sums n0+ni, i ≥ 1,
and but not individually each ni, i ≥ 0. Second, only the
servers which are bottlenecks for some probing intensity can
have their capacity and cross-traffic intensity identified.

We now state the three following preliminary lemmas.



Lemma 1. Two functions fi(x) and fj(x) that are equal at
more than 2 points on the real positive line are identical, and
Ci = Cj and n0 + ni = n0 + nj .

Proof: Note that fi(x) − fj(x) =
Ci(n0+nj)−Cj(n0+ni)+x(Ci−Cj)

(n0+ni+x)(n0+nj+x)
, hence fi(x) = fj(x) is

equivalent to Ci(n0+nj)−Cj(n0+ni)+x(Ci−Cj) = 0. This
equation admits at most one solution unless it is degenerate,
which means Ci = Cj and Ci(n0 + nj) − Cj(n0 + ni). The
last equality is easily deduced from these 2 last equations.

Lemma 2. Two functions fi(x) and fj(x) are equal and have
equal derivatives at some point on the real positive line if and
only if they are identical.

Proof: Assume that fi and fj are equal and have
equal derivatives at x. Then fi(x) = fj(x) and f

′

i (x) =

f
′

j(x), which we can rewrite as Ci
n0+ni+x

=
Cj

n0+nj+x
and

−Ci
(n0+ni+x)2

=
−Cj

(n0+nj+x)2
. It follows directly that n0 + ni +

x = n0 + nj + x, hence n0 + ni = n0 + nj , Ci = Cj and
both functions are identical.

Assume now that server j is at bottleneck when probing
at the intensities belonging to the “minimum set” Xj =
{x > 0, γ0(x) = fj(x)}. Then straightforward computation
leads for all (x1, x2) to

(x1, x2) ∈ X2
j ⇔

{
x2γ0(x2)−x1γ0(x1)
γ0(x1)−γ0(x2)

= n0 + nj ,
(x2−x1)γ0(x1)γ0(x2)

γ0(x1)−γ0(x2) = Cj .
(7)

Lemma 3. The minimum sets Xj are convex.

Proof: By contradiction, let x1 < x3 be two elements of
Xj , x2 ∈ [x1, x3] and assume that x2 /∈ Xj . Then ∃k 6= j s.t.

fj(x1) ≤ fk(x1) , fj(x2) > fk(x2) and fj(x3) ≤fk(x3) .

Functions fj(.) and fk(.) are continuous, which implies from
the intermediate value theorem that ∃ x1 ≤ x4 ≤ x2 and
x2 ≤ x5 ≤ x3 such that fj(x4) = fk(x4) and fj(x5) =
fk(x5). This means that they intersect in two points and must
be identical functions according to Lemma 1, and hence a
contradiction and x2 ∈ Xj .

The following theorem finally allows us to proceed with the
inversion step

Theorem 4. Consider a set of observation points
(xi, γ0(xi)), i = 1, . . . , N , stemming from a max-min
bandwidth sharing path, with capacities (C1, . . . , CK) and
number of flows (n0, n1, . . . , nK). If there is a subset Y of X
such that |Y | ≥ 3 and ∃ (C, n) ∈ R2,∀x ∈ Y, γ0(x) = C

n+x ,
then there exists a server Sj such that Y ⊂ Xj (hence
Cj = C and n0 + nj = n) and any observation point
(xi, γ0(xi)) such that minY ≤ xi ≤ maxY also verifies
γ0(xi) = fj(x).

Proof: Let x1 < x2 < x3 be three points of Y . By
assumption of the max-min allocation, there exists a server
j with capacity Cj and number of flows n0 + nj such that
γ0(x2) = fj(x2) and ∀i 6= j, fi(x2) ≥ γ0(x2). By Lemma
2, if functions fj(.) and C

n+x are equal and have equal

derivatives, the result is immediate. Otherwise, there exists
a such that fj(x2 + a) < C

n+x2+a
. Assume for simplicity that

a > 0. Since x2 and x3 belongs to Y , we have by definition
that fj(x2) = γ0(x2) = C

n+x2
and fj(x3) ≥ γ0(x3) = C

n+x3
.

It follows from the intermediate value theorem that ∃x4 ∈
[x2 + a, x3] s.t. fj(x4) = C

n+x4
, and fj(.) and γ0(.) are equal

at x2 and x4. Lemma 1 then concludes that C = Cj and
n = n0 + nj . The last part follows immediately from the fact
that the minimum sets are convex.

The tomography algorithm then proceed as follows:
1) Given a pair of “unassigned” consecutive measurement

intensities (x1, x2), determine a possible candidate pair
(C, n) using (7);

2) Find the maximal subset X of measurement intensities
such that ∀x ∈ X , γ0(x) = C

n+x ; from Theorem 4, this
subset is convex, and one can sequentially check every
measurement intensity;

3) if |X| ≥ 3, then assign (C, n) to a server Sj , and X as
its minimum set Xj ;

4) If there exist at least 3 consecutive unassigned and
unchecked measurement intensities, go back to 1.

5) Else, either stop and return the assigned pairs (Cj , nj),
or add measurement points in order to have 3 consecu-
tive unassigned measurement intensities.

The algorithm relies on equation (7) and Theorem 4 to
identify the minimum sets Xj . Note, however, that we identify
only a subset of the pairs set {(Cj , n0 + nj)}1≤j≤K , and that
we are not able to give the order of the servers.

3) Other α-fair allocations: In this section, we analyze the
case when the allocation is α−fair, α being a positive integer.

First consider the case where all servers have the same
capacity C. Recall solution (6): γ0(x) = C

n0+ñ+x
, where ñ

is defined as ñ =
(∑K

i=1 win
α
i

) 1
α

. Using (7), we can fully
inverse the problem if and only if we have two different
measure intensities x1 and x2, leading to:{

n0 + ñ = x2γ0(x2)−x1γ0(x1)
γ0(x1)−γ0(x2)

,

C = (x2−x1)γ0(x1)γ0(x2)
γ0(x1)−γ0(x2) .

(8)

In the case of general capacities, we are not able to
predict the bandwidth allocation. However, the identifiabil-
ity problems disappear, and can infer all capacities and
flow numbers with mild assumptions. In fact, recall that
(5) is valid in the present case; multiplying each side by
γ0(x)α

∏K
i=1 (Ci − (n0 + x)γ0(x))

α, we can rewrite it as

w0

K∏
i=1

(Ci − (n0 + x)γ0(x))
α

=

γ0(x)α
K∑
i=1

win
α
i

∏
j 6=i

(Cj − (n0 + x)γ0(x))
α
. (9)

From (9), it is obvious that the flow numbers ni and weights
wi are not independently identifiable. They appear only within
their product winαi , and as neither ni, wi nor α can be changed
by the prober, the best that can be identified is the product



win
α
i . Remark that we can assume without loss of generality

that w0 = 1.
Assume that α is an integer, and define constant val-

ues (ai,j)0≤i≤j≤αK , which depend only on the capacities
(C1, . . . , CK), the flow numbers (n0, n1, . . . , nK) and the
weights w, such that equation (9) now reads:∑

0≤i≤j≤αK

ai,jx
iγ0(x)j = 0 . (10)

The interest of the polynomial coefficients ai,j lies in the
two following proposition:

Proposition 5. (Proof in Appendix) Given the polyno-
mial coefficients ai,j , there is a unique set of capac-
ities {C1, . . . , CK} and associated “weighted-population”
(nα0 , w1n

α
1 , . . . , wKn

α
K) s.t. (9) and (10) are equivalent.

Proposition 6. (Proof in Appendix) Consider a set of N mea-
surement points (xi, γ0(xi))i=1,...,N for N different probing
flow numbers x1, . . . , xN . For large enough N , there is a
unique solution of coefficients ai,j such that (10) is verified
for all xi, 1 ≤ i ≤ N .

4) Summary: The inversion is possible when enough mea-
surement points are available:

1) If K = 1 or if all capacities are known to be identical,
use (8) to identify the capacity and the aggregated flow
number. Individual flow numbers cannot be determined.

2) If α > 1, use (17) to determine the polynomial co-
efficient ai,j . Find (C1, . . . , Ck) as the roots of the
polynomial

∑αK
i=0 ai,ix

iγ0(x)i. If all capacities are pair-
wise different, use (15) to estimate the individual flow
numbers. Otherwise, estimate the “aggregated” flow
numbers

∑
i:Ci=C

nαi for identical capacities servers,
and individual flows with (15).

3) If α = 1, use (17) to determine the polynomial co-
efficient ai,j . Find (C1, . . . , Ck) as the roots of the
polynomial

∑αK
i=0 ai,ix

iγ0(x)i. Use then (15) to express
all cross-traffic flow numbers (n1, . . . , nK) (or their
aggregated sum in case of identical capacities) as affine
functions of n0. Use these functions and (16) to obtain
a second-degree equation, solve it to get n0, hence the
other flow numbers as well.

C. Numerical application

In this section, we focus on the case of general integer
α, which seems the most interesting for applications and the
simplest from a numerical point of view. To keep notation
simple, we assume that all weights wi are equal to 1.

The simulations were performed using Matlab. For any
number of flows, the bandwidth allocation is computed using
convex optimization tools. Based on these measurement points
(xk, γ0(xk)), we then estimate the coefficient ak,(i,j) (with
a special care for the matrix inversion step), then use the
Matlab “root” routine to find the roots (C1, . . . , CK) of the
polynomial

∑K
i=0 ai,iX

i. For k > 1, the estimation of n
is performed with the Matlab right-side division, a routine

C n # add. est. A est. C est. n(
2
1

) 0
3
1

 0

2.0001 −4.9996 −0.00150 −3.0001 3.9997
0 0 1

(2.0001
1

)−0.00043.0001
1.0002


(
30
1

) 2
5
1

 0

−1.1101 0.4909 8.8867
0 0.1102 5.8391
0 0 1

 (
−1.11

1

)  2.97
−0.08
0.08


(
30
20

) 2
5
1

 0

600.03 −230.27 16.0772
0 −49.999 10.0095
0 0 1

 (
29.99
20.00

)  2.01
4.99
0.997


(
30
1

) 0
200
0

 0

51.82 −568.6 1487
0 −31.256 204.2
0 0 1

 (
29.49
1.76

)  7.56
189
−0.01


(
30
1

) 0
200
0

 5

29.86 −199.16 0.25
0 −30.86 199.06
0 0 1

 (
29.86
1.0001

) 0.0013
199.06
−0.0001


(
30
1

)  0
50
0

 5

0.3085 0.4756 0.0
0 −1.309 −0.4756
0 0 1

 (
1.0
0.31

) −0.4760.476
0.0000


TABLE I

PROPORTIONAL FAIRNESS: TWO-SERVER CASES.
THE TWO FIRST COLUMNS SHOW THE GROUND TRUTH. THE THIRD

COLUMN INDICATES HOW MANY ADDITIONAL MEASUREMENT POINTS
HAVE BEEN USED ON TOP ON THE MINIMUM 5 REQUIRED. THE COLUMN
“EST. A” IS A MATRIX WHOSE COEFFICIENT (I,J) IS THE ESTIMATED ai,j .
THE FIFTH OR SIXTH COLUMNS SHOW THE GROUND TRUTH ESTIMATION.

designed for solving matrices equations of the type AX = B.
If α = 1, the system is not linear, and we use the “Fsolve”
function, where the objective function is the vector of the
equations (15) and (16).

1) Proportional fairness: The case of proportional fairness
is slightly different, because (15) and (16) have to be used to
determine n0. Table I presents a few numerical results.

The estimation is reasonable in the cases 1, 3, 4 and 5. In
the cases 2 and 6, the estimation of the bottleneck capacity
(which, arguably, is the most important value to estimate)
is precise, but the second value is meaningless. Comparing
cases 4 and 5, we can see that additional measurement points
allow a better precision in some cases. In both cases with poor
precision, the matrix P of equation (17) was nearly singular.
As a possible explanation, these were also the cases where a
single server is the clear bottleneck for the probe path, meaning
that the bandwidth is shared almost as γ0(x) = C

n+x , where
C is the capacity bottleneck server and n the number of flows
(outside probes) which cross that server. As x grows large,
the coefficient k, (i, j) of P is xikγ0(xk)j → Cj

xi−j , and the
coefficients ak, (i, i)→ Ci are almost independent of the line
index k. This means that the columns (i, i) are almost all
equivalent, and the matrix P is near singular.

As shown in table II, the instability is worse for the three-
server case. It is still possible to get “correct” estimation as in
the line 2, 3 or 4, but additional measurement points are now
required in order to correctly estimate the coefficient ai,j . The
fact that the estimation is harder when one server is the clear
bottleneck or is clearly over-provisioned, still remains.

2) Other fairnesses: The method is numerically unstable
and leads to meaningless (complex) results. The reason is that
it requires at least (αK+1)(αK+2)

2 −1 measurement points, and
the inversion of a square matrix of the same size. Even for the
smallest case with K = 2 and α = 2, the minimum size is



C n # add. est. A est. C est. n2
1
3


0
3
1
7

 0

−1.74 8.28 5.24 −22.7
0 5.04 −19.6 −3.7
0 0 −4.3 10.7
0 0 0 1


 1.
0.66
2.64


−0.280.89
−0.29
9.22


2
1
3


0
3
1
7

 5

−5.7 25.5 10.4 −0.706
0 10.6 −33.9 −9.12
0 0 −5.9 10.2
0 0 0 1


1.93

1
2.97


−0.321.70

0.68
6.80


2
1
3


0
3
1
7

 10

−6 26.9 9.63 −0.005
0 11 −35.15 −8.46
0 0 −6 10.23
0 0 0 1


1.98

1
3.02


−0.292.25

0.7
6.4


2
5
3


0
3
1
7

 10

−25.7 99.8 18.52 −13.1
0 27.5 −67 −9.4
0 0 −69.3 10.2
0 0 0 1


2.01
4.39
2.91


−0.292.71

0.5
6.15


 2
20
3


0
3
1
7

 10

−13.1 99.2 −147.9 −150
0 17.0 −85.15 62.8
0 0 −7.24 17.8
0 0 0 1


2.00
3.16
2.08


 1.53

2.11
7.8

12.49


TABLE II

PROPORTIONAL FAIRNESS: THREE-SERVER CASES. THE COLUMNS ARE
ORGANIZED AS IN TABLE I.

already 14. In all cases we have considered, the matrix has
a few eigenvalues close to zero, and the inversion leads to
unexploitable estimation of the coefficients ai,j .

IV. THE STATIC TRIANGLE NETWORK

Previous section focused on the single source-destination
path, which is a very specific network. We extend here the
results for the general α-fairness to a non-trivial (but small)
network topology: a “triangle network”, as depicted in Fig. 2.

The networks consists of 3 servers, each pair being con-
nected to each other. Server Si has a capacity Ci. ki flows
cross the server Si, and each of them gets an allocated
bandwidth ηi. There are also flows using 2 servers: n3 (resp.
n2 and n1) flows use the route (S1, S2) (resp. (S1, S3) and
(S2, S3)) and each of them gets an allocated bandwidth γ3
(resp. γ2 and γ1). The prober can add x1 (resp. x2 and x3)
flows on the route (S2, S3) (resp. (S1, S3) and (S1, S2)). Each
of these flows get each the same bandwidth allocated to the
route.

S1

S2 S3

k1 η1

n2
x2

n3
x3

k2

η2γ3
γ3

n1
x1

k3

η3

γ2
γ2

γ1
γ1

Fig. 2. The triangle network.

Differentiating the fairness with respect to each γi, we get
the following equations:

(C2 − (x1 + n1)γ1 − (x3 + n3)γ3)
α

(C3 − (x1 + n1)γ1 − (x2 + n2)γ2)
α−

γα1 × [kα2 (C3 − (x1 + n1)γ1 − (x2 + n2)γ2)
α

+ kα3 (C2 − (x1 + n1)γ1 − (x3 + n3)γ3)
α

] = 0

(C1 − (x2 + n2)γ2 − (x3 + n3)γ3)
α

(C3 − (x1 + n1)γ1 − (x2 + n2)γ2)
α

− γα2 × [kα1 (C3 − (x1 + n1)γ1 − (x2 + n2)γ2)
α

+ kα3 (C1 − (x2 + n2)γ2 − (x3 + n3)γ3)
α

] = 0 (11)

(C1 − (x2 + n2)γ2 − (x3 + n3)γ3)
α

(C2 − (x1 + n1)γ2 − (x3 + n3)γ3)
α

− γα3 × [kα1 (C2 − (x1 + n1)γ1 − (x3 + n3)γ3)
α

+ kα2 (C1 − (x2 + n2)γ2 − (x3 + n3)γ3)
α

] = 0

From these equations, we can identify the server capacities
C1, C2 and C3, and the class population k1, k2,k3 and
n1, n2 and n3. Indeed, similarly to (10), it is possible to
define constant values (bi,j,k,l,m,n) (resp. (ci,j,k,l,m,n) and
(di,j,k,l,m,n)), depending only on the flow numbers ni and
ki, the weights wi and vi and the capacities Ci, such that the
first (resp. second and third) equation reads∑
i+j+k≤2α

∑
l≤i

∑
m≤j

∑
n≤k

bi,j,k,l,m,nγ
i
1γ
j
2γ
k
3x

l
1x
m
2 x

n
3 = 0 . (12)

The knowledge of these coefficients is sufficient to esti-
mate the server capacities (C1, C2, C3), the flow numbers
(n1, n2, n3) and (kα1 , k

α
2 , k

α
3 ), using carefully chosen combi-

nation of these coefficients. Due to lack of space, we just give
hints of a possible inversion algorithm here:
• the capacities (C1, C2, C3) can be identified from coeffi-

cients {b0,0,i,0,0,i}, {b0,i,0,0,i,0} and {c0,0,i,0,0,i};
• (n1, n2, n3) can be estimated based on coefficients
b0,1,0,0,0,0, b0,0,1,0,0,0 and c1,0,0,0,0,0;

• coefficients bα,0,0,0,0,0, c0,α,0,0,0,0 and d0,0,α,0,0,0 are
linear in kα1 , kα2 and kα3 .

Finally, it remains to show how one can
estimate the polynomial coefficient values
(bi,j,k,l,m,n)j≤α,k≤α,i+j+k≤α,l≤i,m≤j,n≤k. There are
M = 5α6+51α5+209α4+441α3+506α2+300α+72

72 such bi,j,k,l,m,n
coefficients. For example, we have M = 22 for
α = 1 and M = 160 for α = 2. Assuming that the
prober has access to N ≥ M − 1 measurement points
(x1(p), x2(p), x3(p), γ1(p), γ2(p), γ3(p))1≤p≤N (where we
abusively write γi(k) for γi(x1(k), x2(k), x3(k))), it is
possible to estimate these coefficients using a linear system
similar to (17). In all cases that we simulated, we were able
to add enough points such that the system is full-rank, and
we conjecture that it is possible in all non-degenerate cases.



V. EXTENSION TO THE DYNAMICAL CASE

The two previous sections dealt with static networks. In
this section, we finally address an example of dynamical case,
where users (or flows) join and leave the network, such as
presented in section I-C2.

A. The direct equation

Consider once again the single path network. Let n(t) =
(n0(t), . . . , nK(t)) denote the number of flows for each class
at time t, and λi (resp. 1

µi
) denote the arrival rate (resp. the

mean required service) of flows of class i. Let also x(t) denote
the number of end-to-end probing connections at time t (they
belong to class 0).

We assume that the bandwidth allocation is proportionally-
fair (i.e. α = 1), that all capacities are equal to C, and for
notation simplicity, that all weights wi are identical. At any
time t, the bandwidth allocation is then described by (6) and
we can explicit the rates of the Markov chain in (1) as

q (n, Ti(n)) = λi ,

q
(
n, T−10 (n)

)
= µ0

n0

x+
∑K
i=0 ni

C , (13)

q
(
n, T−1i (n)

)
= 1ni>0µi

∑K
j=1 nj

x+ n0 +
∑K
j=1 nj

C .

Let ρi = λi
Cµi

denote the load of class i. When the number
of probing connection is fixed, we can generalize Theorem 1
in [16] and state that if sup1≤i≤K ρ0 + ρi < 1, the process
n(t) is reversible with equilibrium distribution given by

π (n) = A

K∏
i=0

ρnii

(
x+

∑K
i=0 ni∑K

j=1 nj

)
, (14)

where the normalizing constant A equals

A =
ρx0
∏K
j=1(1− ρ0 − ρj)
(1− ρ0)K−1

.

B. Tomography

Proposition 7. Consider a dynamical bandwidth sharing
network, as described in section V-A. Assume that one can
observe the rate γ0(t) allocated to the probing flows. It is
then possible to identify the capacity C of all nodes, as well
as the load ρ0 of the end-to-end class, the set {ρj}1≤j≤K of
the cross-traffic class loads and the total flow arrival intensity
Λ =

∑K
i=0 λi.

Proof: In fact, the tomography algorithm reads as follows:
1) Changing x when n(t) remains in the same state, use

equation (8) to determine the value of C and the total
number of flows N(t) =

∑K
i=0 ni(t) in the network.

Note that given C, it is then possible at any time using
(6) to measure N(t), on the basis of C and γ0(t).

2) For different numbers x of probing connections, measure
the stationary probability Px(N(t) = 0) that there are
no other connection in the system. We know that (14),

Px(N(t) = 0) = A−1 = ρx0B

where B is independent of x. It is thus possible to
estimate the load ρ0.

3) Simultaneously, using (13), the total flow arrival rate Λ
is equal to the rate of transitions from one state with
N flows to one state with N + 1 flows. Since N(t)
can be deduced at any time, the rate of such transitions,
consequently Λ, can be measured.

4) Finally, for a fixed value of x, the prober
can also observe the stationary probability
P (N(t) = l) that there are l other flows in the
network, for all 1 ≤ l ≤ K. We know that
P (N(t) = 1) = A−1

(
ρ0 +

∑K
j=1

(
x+1
1

)
ρj

)
,

hence
∑K
j=1 ρj can be estimated. Similarly,

P (N(t) = 2)) = A−1
(
ρ20 + ρ0

(
x+2
1

)∑K
j=1 ρj+(

x+2
2

)∑K
j=1 ρ

2
j +

(
x+2
2

)∑
1≤i≤j≤K ρiρj

)
, and

the last two sums can thus be estimated using

a linear system (e.g., using
(∑K

j=1 ρj

)2
=∑K

j=1 ρ
2
j + 2

∑
1≤i≤j≤K ρiρj as a second equation).

Recursively on l, for all decomposition of
l = n1 + · · · + nm in m positive integers, it is
possible to estimate the sum∑

(i1,...,im)
ij 6=ik

nj=nk⇒ij<ik

ρn1
i1
. . . ρnmim .

{ρ1, . . . , ρK} are then the roots of the polynomial in
variable X

K∑
j=0

(
K

j

)
XK−j

∑
1≤i1<...<ij≤K

ρi1 ...ρiK .

VI. CONCLUSION

This paper studied inverse problems in bandwidth sharing
networks as a mathematical foundation for a flow-based In-
ternet tomography. One fundamental result is that measuring
the bandwidth allocated by an (idealized) TCP to probing
connections allows us theoretically to infer each identifiable
parameter of a static network. Since bandwidth allocation takes
into account the topology of the network, specific equations
need to be developed for a given topology, but the proposed
method can be easily adapted to new topologies. Numerical
examples illustrate the soundness of the proposed method, as
well as the intrinsic numerical difficulty of the problem.

An example also show how this approach can deal with
dynamical networks, where users join and leave the network.
The observation of bandwidth allocation stationary distribution
is sufficient to determine the link capacity, the set of server
loads and the total arrival rate. This promising result needs to
be generalized to other fairnesses and topologies.
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APPENDIX

Proof of Proposition 5

It is easy to check in (9) that
K∏
i=1

(Ci − xγ0(x))α =

αK∑
i=0

ai,ix
iγ0(x)i ,

and (C1, . . . , Cn) are the roots of the polynomial
∑αK
i=1 ai,iX

i.
Similar careful but standard computations then give

al,l = (−1)l
∑

j1+j2+···+jK=l
jk≤α

K∏
k=1

(
α

jk

)
Cα−jkk

al,l+α = nα0

(
l + α

α

)
al+α,l+α + (−1)1+l

K∑
i=1

win
α
i

∑
j1+···+ji−1+ji+1+···+jK=l

jk≤α

∏
k 6=i

(
α

jk

)
Cα−jkk . (15)

The set of equations (15) consists of αK − α + 1 linear
equations with K+1 values (nα0 , w1n

α
1 , . . . , wKn

α
K). For α >

1 and K > 1, it is thus possible to determine the values of the
flow numbers from these equations by solving the associated
linear system. It is easy to see that the system will be regular if
all capacities are pairwise different. When capacities of server
Si and Sj are equal, the only identifiable information is the
“weighted α-power sum”

(
win

α
i + wjn

α
j

)
, which is similar to

the identical capacities case. The case K = 1 falls into the
“identical capacity” case. Finally, in the case when α = 1,
we have K equations with K + 1 unknowns. It allows us to
express all the flow capacities as an affine function of n0. As

a0,2 = n20
∑
{i,j}

∏
k 6=i
k 6=j

Ck +

K∑
i=1

wini
∑
j 6=i

n0
∏
k 6=i
k 6=j

Ck . (16)

we can rewrite (16) as a quadratic polynomial, which can be
solved to determine n0, and consequently all the flow numbers.

Proof of Proposition 6

Recall that equation (10) holds, for all probing intensities.
We can rewrite it (10) in a vector form as

P ·A = (−1)1+αKY , (17)

where P is the N ×
(

(αK+1)(αK+2)
2 − 1

)
matrix, whose

element of line k and column (i, j) 2 is xikγ0(xk)j , A the(
(αK+1)(αK+2)

2 − 1
)
× 1 column matrix whose element of

2For notation simplicity, we allow some columns or line to be numbered
with a pair of integer, but one can obviously formally use a mapping between
N2 and N.

line (i, j) is ai,j (except aK,K), and Y the N × 1 column
matrix whose kth element is xαKk γ0(xk)αK (we force here
the normalization aK,K = 1). If N = (αK+1)(αK+2)

2 − 1
and P is full-rank, there is unique solution A satisfying (17).
We do not have any proof that P is full-rank; however, in all
practical case we simulated, P was regular, though with some
eigenvalues close to zero. If N > (αK+1)(αK+2)

2 − 1 and P
is full-rank, one can have a more robust estimation of A by
minimizing the error ‖P × A + (−1)αKY ‖ for some well-
chosen norm ‖.‖ (a classical choice is the L2 norm, which
minimizes the quadratic error and leads to linear regression).
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[17] P. Key, L. Massoulié, A. Bain, and F. Kelly, “Fair internet
traffic integration: network flow models and analysis,” Annals
of Telecommunications, vol. 59, 2004. [Online]. Available: http:
//dx.doi.org/10.1007/BF03179724

[18] F. Baccelli, B. Kauffmann, and D. Veitch, “Inverse Problems in Queue-
ing Theory and Internet Probing,” Queueing Systems, vol. 63, no. 1–4,
pp. 59–107, 2009.


