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Abstract—This paper presents an in-depth study of YouTube
video service delivery. We have designed a tool that crawls
YouTube videos in order to precisely evaluate the quality of
experience (QoE) as perceived by the user. We enrich the main
QoE metric, the number of video stalls, with many network
measurements and use multiple DNS servers to understand the
main factors that impact QoS and QoE.

This tool has been used in multiple configurations: first, to
understand the main delivery policies of YouTube videos, then to
understand the impact of the ISP on these policies and finally,
to compare the US and Europe YouTube policies.

Our main results are that: (i) geographical proximity does not
matter inside Europe or the US, but link cost and ISP-dependent
policies do; (ii) usual QoS metrics (RTT) have no impact on QoE
(video stall); (iii) QoE is not impacted nowadays (with good access
networks) by access capacity but by peering agreements between
ISPs and CDNs, and by server load.

We also indicate a network monitoring metric that can be used
by ISPs to roughly evaluate the QoE of HTTP video streaming
of a large set of clients at a reduced computational cost.

I. INTRODUCTION

Nowadays, web-driven content represents about half of the
Internet traffic due to the decrease of P2P and the surge of
video sharing sites [13], [10], [11], [12], with YouTube being
the most popular. Among the different online video services,
HTTP video streaming (using Flash technology) is the most
popular one. Services such as blogs and social networks are
also enabling users to embed personal videos, thus expanding
the video streaming audience. As the users usually watch
HTTP video streaming while downloading therefore called
Progressive Download, the impact of quality degradation is
directly perceived. It is therefore of primary interest for ISPs.

In this paper, our goal is to understand the YouTube
distribution policy and its impact on Quality of Experience
(QoE) from an end-user’s point of view. For this purpose, we
designed an active measurement tool to evaluate the QoE of
YouTube videos with the number of stalls in the video as
primary indicator. The purpose of our work is to shed light on
YouTube video delivery policies and its infrastructure.

In over a year, we collected several measurements with
different configurations. In order to compare results between
ISPs, we took advantage of a multi-connected lab with ac-
cesses to different ISPs but with similar access rates. We
complemented these findings with some specific European
measurements. We also benefited from simultaneous measures

collected by a class of Kansas City students that allowed us
to compare the distribution policies between Europe and US.

The main results are that video delivery policies vary a lot
even inside the same country and for the same geographical
location. The traffic distribution is highly dependent on the ISP
and this can impact the end-user’s QoE. Finally, the network
and server load-balancing policies dictate the choice of the
cache site used by YouTube to deliver the video, whereas the
geographical location is not as important. We have also seen
that these policies are very volatile and can change abruptly,
even on a timescale of a few months.

This paper is organized as follows: we first review related
work in Sect. II. We present our tool and methodology in
Sect. III. The datasets used are explained in Sect. IV. The
main results are exposed in Sect. V, and the knowledge gained
on the YouTube infrastructure is explained in Sect. VI. We
conclude the paper in Sect. VII.

II. RELATED WORK

We can divide the measurement studies of YouTube into
two groups: passive and active studies. Our work is an active
measurement whose goal is to infer QoE as seen by the end-
user, and also to understand how YouTube video distribution
works. We briefly recall the main passive and active studies
of YouTube, before showing how our work differentiates from
the other active measurement analyses.

A. Passive Measurement Studies

Many articles have focused on determining the charac-
teristics of YouTube videos. Studies more relevant to our
work investigated the YouTube CDN architecture and network
related performance either based on NetFlow statistics [2] or
on packet captures [13], [20], [5]. The influence of traffic
management between ISPs and CDNs is underlined in [6].

The impact of DNS on CDN network performance has been
studied in [15] showing that a cooperation between ISPs and
CDNs could be beneficial to both parties and to the end-
users as well. The importance of DNS resolution has also
been studied in [20], where the YouTube server selection is
explained and how this knowledge can be applied to design
complex load-balancing techniques.

The user experience and the impact of network performance
on user behavior has been studied in [7], [14], [13] based on



packet traces captured at an ISP. The main results are that
usually the default video configurations are used and users
often jump within the videos. With good network conditions,
this may lead to a large amount of wasted bytes (downloaded
but not watched). On the user side, the response to deterio-
rated network performance is to shorten their video watching
sessions.

B. Active Measurement Studies

In [17], PlanetLab nodes were used to probe and compare
the server infrastructure of 3 different HTTP video streaming
services (including YouTube) by comparing the time taken
to download the first MByte of the videos. They investigated
the service delay distribution according to the geographical
location of users and the characteristics of the video (age and
popularity).

PlanetLab based active measurements were also used in [3]
to understand the dynamics of YouTube video server selection
by studying the mechanisms of load-balancing (static, semi-
dynamic through DNS and dynamic through HTTP redirect).
In [1], the authors pursue the investigation of the YouTube
infrastructure, and give many insights into the YouTube video
cache server hierarchy.

The impact of DNS resolvers has been compared in terms
of latency and caching in [4] (not specific to YouTube).
Application level monitoring for ISPs (a goal that we also
share) was studied in [19], not only with applications such as
quality evaluation but also routing policy management.

The study of YouTube QoE was undertaken with a crowd-
sourcing approach in [8]. This paper shows that the primary
QoE factors in YouTube video watching are the number of
stalls followed by their duration. In [18], an estimator of a
YouTube video QoE was designed to be able to predict future
stall events.

C. Novelty of our Work

Our work differs from others since we are not only inter-
ested in the network performance to access the YouTube video
streaming servers but also in the perceived video playback
quality. One work towards these goals asked for manual user
feedback via crowd-sourcing [8]. In this perspective, one of
the main interests of our study is to automatically estimate
the QoE of the users without having to ask users for their
feedback. We also present a metric to objectively estimate the
QoE based on download throughput and encoding rate.

The difference in our dataset and PlanetLab based mea-
surements is also important. We primarily focus on residential
accesses that have different characteristics when compared
to PlanetLab accesses (often behind large Universities or
Research Centers). In [1], they show that the access rates
for Planetlab nodes are significantly higher than residential
accesses. This leads to different treatment in the YouTube
video delivery. The diversity of ISPs in our data allows us to
show that the delivery policy (mainly video server selection
Sect. V-A) highly depends on the ISP. Finally, many changes
observed during the duration of our measurements (almost one

year) show that the YouTube infrastructure is highly dynamic
even at the limited timescale of a few months.

III. METHODOLOGY

The ability to measure QoE of HTTP video streaming is
important as it represents a large part of Internet traffic. Passive
monitoring can be used to easily monitor a large set of users,
but in this case, the perturbations between the probe and the
end-user are not taken into account in the analysis. Moreover,
as the video data transfered during HTTP video streaming can
become huge, large scale passive monitoring would need too
much processing. Therefore, we have chosen to monitor the
HTTP video streams directly from the end-user’s computer.

The interruptions to video playback can be attributed only to
insufficient network conditions in HTTP streaming. The video
quality depends only on the encoding. Once the definition has
been chosen (by default on YouTube: 360 × 640), no other
image degradation is possible (e.g. pixeling). Thus, we have
chosen only to decode the timestamps of the Flash Video
(FLV) frames. This allows us to have a precise evaluation
of video time without the cost of video decoding. With this
information, we have reverse engineered the YouTube flash
video player to model its behavior.

A. Tool Presentation

We have designed a tool, Pytomo [16], to measure QoS
and QoE of YouTube videos. Our tool functions as follows:
After the bootstrapping phase, where we collect the URLs of
the most popular videos of the week, we process each URL as
follows: (i) retrieve the URL of the video server; (ii) perform
the DNS resolution to obtain the IP address of video server;
(iii) collect QoS statistics ; (iv) collect QoE statistics. Videos
related to the current video (obtained through YouTube API)
are then added to the list of videos to be crawled.

1) Network Statistics: Our tool collects the following statis-
tics (see [9] for a detailed description):

• Ping statistics: min, max, average (over 10 packets)
• Video information: format, duration, length, mean encod-

ing rate
• Download statistics: average throughput, initial through-

put (over the first 3 seconds), maximum instantaneous
throughput (for a TCP session)

These network statistics are collected per video for each IP
address of the video servers.

2) Model of Video Playback: The goal of this model is to
be able to detect and count interruptions in the streaming video
playback. A large scale QoE study on YouTube quality [8] has
shown that interruptions (stall) in the videos are the main
Quality of Experience (QoE) indicator for video streaming.
At the time of writing, seamless video rate adaptation was
not available on the main progressive video sites, such as
YouTube. Thus, the only way to cope with reduced network
throughput was to wait for more data. To model the streaming
video playback, we maintain two metrics:

D(t): Amount(seconds) of video content downloaded up to
time t i.e. the amount of video that is downloaded



in terms of playback duration (obtained through the
timestamps of FLV tags)

P (t): Amount (seconds) of the video utilized up to time t
in terms of playback duration ie. the amount of video
that was watched.

These two timescales correspond respectively to the gray and
red bars in the YouTube player. Obviously when the red
bar corresponding to the playback gets close to the gray
bar corresponding to the downloaded video, the playback is
interrupted. Thus, we have

D(t)− P (t) < minimal-playout-buffer⇒ Playback stops

The restart of the playback occurs when the amount of video
that has been buffered is enough.

D(t)− P (t) > minimal-restart-buffer⇒ Playback resumes

By keeping track of the state of the playback, we were able to
infer the number of interruptions during video playback. This
model does not take into account jumps inside the video or
playback pauses initiated by the user. We are aware of these
limitations and think this model should reflect common user
behavior. Moreover, in case of a jump inside the video, the
model is still valid: as shown in [14], a jump in a part of the
video that is not already downloaded creates a new connection
starting at the requesting time (instead of beginning).

The video playback statistics that we collected were the
initial buffering duration, the number of interruptions, the total
buffering duration and the seconds buffered at the end of the
download.

In Sect. III-B we explain how the values for the model are
obtained.

3) Design Implications: As we begin our crawl with the
most popular videos of the week (by default), we were biased
towards popular videos. This is a deliberate attempt so as to
assess the QoS and QoE for the content that most users watch.
In [1], the authors show that cold (unpopular) videos are much
more likely to encounter HTTP Redirect, mainly due to cache
miss in the video datacenter. This implies that in our case,
HTTP Redirect should be due to a high video server load
(and not cache miss).

B. Validation Process

In order to obtain reliable results, the validation and cal-
ibration of our tool was carefully undertaken. We use a
local server to deliver the video so that we could completely
control the video delivery during the calibration process. We
simultaneously launched a video download with our crawler
and a video playback in a browser. The video was delivered by
our local server; note that we had to use a proxy for the video
player in the browser since the domain security parameters
in the YouTube Shockwave player do not allow queries on
domains other than youtube.com (such as localhost).
The total control of the video server allowed us to precisely
check the threshold values for the various parameters of the
model (see III-A2). We gradually varied the minimum amount
of data initially transferred to determine the precise value

for the amount of data required to start the video playback.
We used a similar approach to measure the other parameters.
Therefore we visually verified that the playback modeled in
the tool corresponded to the playback in the browser. The
following values were determined

• Seconds of video content initially buffered (initial buffer):
2.0 seconds;

• Seconds of video content needed to continue playback
(minimal playout buffer): 0.1 seconds;

• Seconds of video content needed to resume playback
(minimal restart buffer): 1.0 seconds.

These values agree with the ones chosen in [18] that infer
the video quality based on browser events. Decoding the FLV
timestamps allowed us to determine precise values of these
parameters.

IV. DATASETS DETAILS

Our tool is able to run on any PC with minimal setup, thus
enabling us to run it under various environments.

1) Volunteer Crawls: We have a large number (145) of
volunteer crawls done by ourselves, many colleagues and
friends in Europe and the US. This has allowed us to first
test our tool, and then to have many different vantage points
for analysis. Theses crawls started in March 2011 and are still
running at the time of writing (February 2012). Their durations
varied from a few hours to many days.

2) Controlled Crawls: We have also benefited from a set-
up at a single location connected to different ISPs that provide
7 ADSL, 1 Fiber, and 1 Cable Internet access. Note that
the ADSL accesses have exactly the same access bit-rate.
These controlled crawls have been useful to launch specific
tests across multiple ISPs with comparable setups where only
the ISP was varied (geographical location and bit-rate were
the same). We focused on 8 crawls with each lasting for at
least two days and were obtained between September 2011 to
January 2012. We have presented data from only one crawl in
September 2011 and one in December 2011 since these are the
only two datasets where a significant amount of video stalls
occur. This indicates that

• the quality of YouTube videos is highly dynamic;
• at the time of measurement, only a few video stalls were

observed overall.
These crawls were used to compare YouTube’s policy with

respect to the ISP without any difference in the access links.
3) Kansas City Crawls: Finally, a complete class of UMKC

students were assigned to run simultaneous crawls from their
homes on weekdays in the second week of December 2011
for two hours. These 70 Kansas City crawls gave us some
insights into the US market. For YouTube, the US represents
about 15% of YouTube traffic and 28% of YouTube users.

These are useful when comparing the findings from the
European and US crawls.

Note that the instantaneous throughputs recorded in the
crawls allowed us to validate that no access network limitation
was encountered; either by the access rate limit, or by excess
usage of other applications while using our crawler.



V. RESULTS

In this section, we expose the main results from our exper-
iments. We show the impact of the DNS server used and of
the ISP on the selection of the IP address and video server
respectively. We show that these two key components have an
unexpected impact on the QoS of video streaming.

A. Video Server Selection

1) YouTube Video Server URLs: The URL of a YouTube
video is usually: http://youtu.be/XXXXXXXXXXX or
http://www.youtube.com/watch?v=XXXXXXXXXXX.
The YouTube video webpage comprises of multiple parts:
the main video in the flash player and the rest (comments,
related videos, ads. . . ). The video played in the flash player is
downloaded using another TCP connection. This connection
is responsible for the video delivery but our analysis focuses
only on the connection to the video server.

The URL of the video server is customized according to
the IP address of the requesting user. We have listed the
main types of URLs in Tab. I for controlled crawls (in France)
and in Tab. II for Kansas City crawls (in the US). We adopted
the same naming convention as in [1]. The 2 main types of
URLs in our data are: lscache and nonxt. They represent
primary cache locations of the YouTube infrastructure. A
city code, corresponding to the local airport code, is always
included in the URL and indicates the preferred location of
the YouTube cache site. For some ISPs, a specific URL that
includes the name of the ISP along with the city code is given;
this should direct users to cache sites dedicated to the ISP.

In [1] the authors showed that the mapping of the video ID
to the URL of video servers is fixed. This means that if a video
is served by a primary cache site as ...v6.lscache2...
with one ISP, it can be directed to another primary cache site
but with the same v6 and lscache2 in the video server
URL.

In our data, the secondary and tertiary cache loca-
tions of the YouTube infrastructure were used only in
the case of redirections. Their URLs are of the form:
...v[1-24].cache[1-8].c.youtube.com. Note that
there are also unicast hostnames to directly address physi-
cal servers: r[1-24].CITY_CODE.c.youtube.com. We
encounter these URLs only in the case of redirection.

2) In Europe: The most common form of video server URL
is lscache as shown in Tab. I for the controlled crawls. In
these crawls from France, the city codes are par and ams for
Paris and Amsterdam, respectively. From Tab. I, this preferred
location clearly depends on the ISP. Here are the main findings
from Tab. I:

• ISP B had all its video server URLs on one cache site
(par08s01) in Paris.

• ISP N had all its video server URLs with Paris cache site
as the preferred location but with two different logical
names (par08s01 and par08s05).

• ISP O had a dedicated cache site (ISP_O-par1), and
the IP addresses of this site belonged to a specific AS
(36040).
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Fig. 2: Evolution of the percentage of videos with at least one stall
over time (per each period of 60 minutes) for two ISPs (F-V and S-V)
during December 2011 controlled crawl

• ISPs S and F were directed to cache sites in Paris or
Amsterdam with different proportions: about 66% to
Amsterdam for ISP S and 10% for ISP F.

This highlights that the customization of video server URLs
is done for each ISP.

The network impact of the location on the ping time was
found to be very low. For example, the minimum ping time
to the Paris video servers was 23.8 ms and of 28 ms to
Amsterdam (because of a relatively small distance between
the two cities). But the main point is that the choice of the
preferred location is dependent on the time of day as shown
in Fig. 1. This indicates a deliberate choice depending on
ISP. Moreover, even if the difference on the minimum ping
value is very low, the cross traffic on the path from France
to Amsterdam can increase the ping value to as high as 200
ms. Fig. 1 shows a large variance in ping times towards the
Amsterdam video servers. Overall, the average ping time to
the Paris video URLs is of 25.6 ms, whereas it’s 53.8 ms to
Amsterdam.

3) Impact on QoE: Focusing on the QoE, Fig. 2 shows the
average number of interruptions per each period of 60 minutes
for 2 ISPs during a controlled crawl in December 2011.
This demonstrates that the preferred location had almost no
impact on the interruptions. In this crawl, F-V access had lots
of periods with many videos affected by stalls, while using
video servers based in Paris. Whereas, S-V access had no
stalls even though it was mainly served by video servers in
Amsterdam. Indeed, the factor that affected the interruptions
was the average throughput and not the minor differences in
the delay to the server.

At TCP level, a ping time of 200 ms means that 5 TCP
windows can be transmitted per second. With a window size of
64 kBytes (minimal value), it leads to a maximum throughput
of 320 kBytes/s. The average encoding rate of videos in our
data was 555 kb/s or about 70 kBytes/s. This means that this
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Fig. 1: Ping time in milli-seconds to main YouTube cache sites observed in a controlled crawl in December 2011

ISP
URL Regexp A B-A B-F F-R F-V N O-L S-E S-V

o-o.preferred.par08s01.v[1-24].nonxt[378].c.youtube.com 0 1 2 0 0 0 0 0 0
o-o.preferred.ams03g05.v[1-24].nonxt[378].c.youtube.com 0 0 0 0 2 0 0 0 4

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 0 2676 2677 0 0 1890 0 1967 1528
o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 1636 0 0 952 2425 799 0 0 0
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 150 0 0 0 206 0 0 3033 2488

o-o.preferred.ISP O-par1.v[1-24].lscache[1-8].c.youtube.com 0 0 0 0 0 0 2591 0 0

other 0 0 0 0 0 0 1 0 2

TABLE I: Number of videos for each ISP according to Regexp on a video server URL for a controlled crawl in December 2011

delay to the video server allows, when there is no congestion
(losses), a throughput largely above the one needed to achieve
playout without stalls.

In summary, the video server selection clearly depends
on the user’s ISP and mainly obeys engineering and load-
balancing considerations rather than the closest source or
similar strategies.

4) In the US: We used the Kansas City crawls to compare
the knowledge gained while analyzing the European data with
that of the US. The large number of URLs of video servers
(14) indicated that YouTube allowed many more cache sites
to be included in the distribution of videos in the US than
in Europe. In Tab. II, for each video server URL regexp, we
counted the number of videos and the average ping time to
the servers. Note that we only included the data from the main
prefix (/24) for each URL regexp.

In Tab. II, most of the cache sites are located in the West
and Mid-West regions of the US. The most frequent location
is Washington DC, even if it is about twice as far (ping-
wise) as Dallas. We also had some video servers that were
far from Kansas City, such as Miami. If we closely look at
the ping values for some cities, we had some variable results.
For example, Dallas cache sites had approximately 24 ms or

about 50 ms ping values. The reason was that some caches at
the Dallas sites had IP addresses in the Google AS (15169)
and others in the YouTube AS (43515). The path towards these
distinct ASes can thus be different, resulting in different ping
times. Note that in our data, the larger ping times correspond
to cache sites in the YouTube AS. This was the case for both
Dallas and Washington DC.

This validates that the proximity of the cache site plays
only a secondary role in video server selection, and that
interconnection between ISPs and ASes is a primary factor
in network performance.

B. Evaluation of QoE Approximation Techniques

We tested how precise could be an approximation of video
stalled by an indicator relating download throughput and
encoding rate. This could be useful for large scale analysis
where complete analysis of the download is not possible. We
explored two metrics: one based on Deep Packet Inspection
(DPI) and the other based only on flow level statistics.

1) DPI Metric: We have chosen the same metric as in [13]:

reception ratio =
DownloadThroughput

V ideoEncodingRate



URL Regexp Location¶ Nb. of samples Average Ping time

WEST
http://o-o.preferred.iad09g05.v[1-24].lscache[1-8].c.youtube.com Washington DC 1439 97
http://o-o.preferred.sjc07s11.v[1-24].lscache[1-8].c.youtube.com San Jose 446 73
http://o-o.preferred.lax04s12.v[1-24].lscache[1-8].c.youtube.com Los Angeles 147 75
http://o-o.preferred.iad09s12.v[1-24].lscache[1-8].c.youtube.com Washington DC 44 60
http://o-o.preferred.sjc07s15.v[1-24].lscache[1-8].c.youtube.com San Jose 10 61

MID-WEST
http://o-o.preferred.comcast-dfw1.v[1-24].lscache[1-8].c.youtube.com Dallas 719 50
http://o-o.preferred.dfw06g01.v[1-24].lscache[1-8].c.youtube.com Dallas 308 59
http://o-o.preferred.dfw06s08.v[1-24].lscache[1-8].c.youtube.com Dallas 190 24
http://o-o.preferred.mna-mci1.v[1-24].lscache[1-8].c.youtube.com Kansas City 71 184
http://o-o.preferred.ord12s01.v[1-24].lscache[1-8].c.youtube.com Chicago 64 1105
http://o-o.preferred.kanren-lwc1.v[1-24].lscache[1-8].c.youtube.com Lawrence 50 38

EAST
http://o-o.preferred.mia05s05.v[1-24].lscache[1-8].c.youtube.com Miami 660 261
http://o-o.preferred.lga15s20.v[1-24].lscache[1-8].c.youtube.com New York 89 53

TABLE II: Ping times according to video server URLs for Kansas City crawls
¶ we mention the city corresponding to the airport code inside the URL

A download throughput lower than an encoding rate should
result in interrupted playback (reception ratio < 1). In this
case, one can use a DPI tool to retrieve the video encoding
rate from the video streaming flow.

To evaluate the accuracy of this method, we used two stan-
dard metrics usually used in classification studies(as in [11]).
They are based on the concepts of

• True Positive TP: reception ratio > 1 and the video had
no stall

• False Positive FP: reception ratio > 1 but the video had
at least one stall

• True Negative TN: reception ratio < 1 and the video had
at least one stall

• False Negative FN: reception ratio < 1 but the video had
no stall.

Out of these notions, we built the following evaluation metrics:
• recall = TP / (TP + FN): This corresponds to the fraction

of uninterrupted videos correctly evaluated.
• precision = TP / (TP + FP): This corresponds to

the ratio of uninterrupted videos in the videos with
reception ratio > 1.

Here are the results of the F-V December 2011 crawl:
91.8% of recall and 88.5% of precision. This means that the
reception ratio, based on the video encoding rate, is quite
accurate to determine stalls in the videos.

2) Pure-Network Metric: If we further explore the idea of
computationally efficient evaluation, we can construct another
metric without any DPI phase. We compared the download
throughput to the default encoding rate. We measured this
default encoding rate at 555kb/s in our data. Hence, the metric
is:

simple reception ratio =
DownloadThroughput

555 kb/s
.

This leads to the following evaluation of the metric: 28.7% of
recall and 100% of precision. This means that this non-DPI
metric can surely assess that a video is interrupted, but would
class a lot of interrupted videos as good ones.

URL Regexp # /24

o-o.preferred.par08s0[15].v[1-24].lscache[1-8].c.youtube.com 1
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 4

o-o.preferred.ISP O-par1.v[1-24].lscache[1-8].c.youtube.com 2

(a) September 2011

URL Regexp # /24

o-o.preferred.par08s0[15].v[1-24].lscache[1-8].c.youtube.com 1
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 12

o-o.preferred.ISP O-par1.v[1-24].lscache[1-8].c.youtube.com 2

(b) December 2011

TABLE III: Distribution of IP prefixes (/24) of video servers of all
ISPs for controlled crawls

3) Application of these Metrics: The conclusion of this
evaluation was that to roughly evaluate video streaming
QoE, we can focus on network throughput (instead of parsing
all the FLV timestamps) but a DPI engine was needed to
have a precise evaluation of the encoding rate of the video.
Another advantage of this method is that we do not need to be
at the end-user side (as the throughput is limited from end to
end by TCP). Hence it can be applicable to monitoring probes
that are placed in the core network (thus connecting a lot of
clients).

VI. YOUTUBE INFRASTRUCTURE

From the knowledge gained in Sect. V, we tried to gain
more insight into the YouTube infrastructure. In this section,
we use the controlled crawls but do not separate data per the
ISPs as we are interested in the global YouTube infrastructure.

A. Datacenter sizes

1) URLs to IP prefix mapping: The YouTube video servers
with the same /24 IP prefix usually sharing the same location.
In Tab. III, based on data from our controlled lab, we indicated
that the main URL regexps were the number of prefixes /24



URL Regexp # IPs

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 160†

o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 160†
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 328

o-o.preferred.ISP O-par1.v[1-24].lscache[1-8].c.youtube.com 98
† these 160 IP addresses are the same

(a) September 2011

URL Regexp # IPs

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 80‡

o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 80‡
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 494

o-o.preferred.ISP O-par1.v[1-24].lscache[1-8].c.youtube.com 130
‡ two distinct subsets of 80 IP addresses

(b) December 2011

TABLE IV: YouTube Datacenters sizes according to the Number of
IP addresses seen for crawls of all ISPs on each URL Regexp

found with the default DNS server of each ISP. First, note
that we joined two regexps (lscache URL with par08s01
and par08s02) because they share the same prefix. Also, the
Paris site had fewer prefixes than the Amsterdam site. More-
over, the number of prefixes used in Amsterdam had grown
rapidly in 3 months, from 4 prefixes to 12. An interesting point
is that the /24 prefixes were quite dispersed and could not
be merged in larger prefixes. Also, the prefixes were distinct
between the URL regexps.

Finally, we have to mention that when the QoS (here ping
times) were so small, these differences did not translate into
QoE differences. And as seen in Sect. V-A2 for F-V, closer
videos servers did not guarantee a better QoE.

2) IP address count: In Tab. IV, we counted the number of
IP addresses for each video server URL Regexp. For each URL
Regexp, we had exactly 192 different hostnames1 (also seen
in [1]). This means that for the Paris datacenter, we had fewer
IP addresses (160) than hostnames. Also note the volatility in
the distribution of IP addresses in September 2011 (Tab. IVa).
The 160 IP addresses were shared between the two main
Paris lscache URL regexps, whereas in December 2011
(Tab. IVb), 80 distinct IP addresses were assigned to each
lscache URL regexp.

We also sent ping probes to the missing IPs that belonged
to the prefix; there was usually no reply to the TCP ping on
these IP addresses. This means the load-balancing used by
YouTube allows us to cover most of the alive machines and
all of the hostnames of the datacenter even with a 2 days
probing period.

As for the distribution of URL regexps, the video server
URL clearly depended on the user’s ISP. So in December
2011, for some ISPs, distinct subsets of the video servers prefix
were used.

Sect. VI-A1 has shown that the Amsterdam site was larger
than Paris in terms of prefixes. This was also the case for the

1this corresponds to the whole range of possibilities

ISP Percentage of Redirection

A 29.22
B-A 29.58
B-F 30.83
F-R 26.57
F-V 25.33
N 30.19
O-L 12.69
S-E 49.02
S-V 45.99

TABLE V: Percentage of Redirection per ISP for December 2011
controlled crawl
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Fig. 3: Percentage of Redirection (over all videos) per YouTube
Cache Site for ISP S-V per hour

number of IP addresses. For the same amount of hostnames,
we had many more IP addresses in Amsterdam than in Paris.
We had a 50% increase in the number of IP addresses in
Amsterdam from September to December 2011.

B. Redirections

YouTube uses redirections to add a level of dynamic load-
balancing (on top of the DNS policy and cache site selection
according to ISP, which are both centralized). The number of
redirections in our controlled crawls were quite variable. In
Tab. V, some ISPs had up to 50% of videos redirected while
others had only 12% of them. Moreover, these redirections
occured throughout the day and not specifically at peak
hours. The redirect URLs mainly have a unicast form (see
Sect. V-A1). In our data, the redirections were usually sent to
these cache sites: par (Paris), followed by ams (Amsterdam),
fra (Frankfurt), and lhr (London).

In [1], [20], the explanation for redirections lies in the un-
availability of the requested video or in the datacenter load.
Due to our choice of bootstrapping the crawls on popular
videos, the chances to have had redirections, because of cache
misses were are unlikely. As for the load, the redirections also
occur during off-peak hours.

From Tab. V we see that the probability of redirection is



dependent on the ISP. In the case of an ISP with a customized
URL (like ISP O), there were only 12% of redirections,
whereas in the case of ISP S, half of the videos encoun-
tered redirections. This is surprising as the cache sites was
shared between ISPs. In Fig. 3, we ploted the distribution of
redirection over time for the same ISP shown in Fig. 1a. The
graph does not show any correlation between time of day (peak
vs. off-peak hours) and the percentage of redirections. Also,
the redirections were usually sent to another cache site; in
this case, mainly to London (34%), Frankfurt (30%) or Paris
(26%). This means that even if the distribution policy sends a
user to an Amsterdam cache site, the redirections could have
sent him back to Paris. We conclude that the primary focus
of HTTP redirection (except for cache misses) is to unburden
the YouTube infrastructure.

So this seems to indicate that the centralized distribution
policies (through cache site selection and DNS) addresses
the traffic load balancing, whereas the decentralized dis-
tribution policies (through HTTP redirects) addresses the
server load.

VII. CONCLUSION

We have presented a reliable tool to automatically evaluate
the playback quality2 of YouTube videos as experienced by
users. One of the main objectives of this tool is to understand
the delivery policy of YouTube and relate it to the DNS
resolution policy.

In our study, we used many volunteer crawls to infer the
main delivery policies of YouTube videos. We have completed
these crawls with controlled crawls in a specific lab to show
the difference in treatment between ISPs for accessing the
same service. Finally, we used many simultaneous crawls
from Kansas City in the US to comment on the difference
in infrastructure between Europe and the US.

The main findings of our study are that geographical prox-
imity does not really matter inside Europe or the US, but
network/server load-balancing and ISP-dependent policies do.
Usual QoS metrics (RTT) have no impact on QoE (video
stalls). The number of HTTP redirects are quite high in our
data, indicating a globally high load on the YouTube video
servers. Finally, QoE is no longer impacted by access capacity
but by peering agreement of ISPs and by the server load.

The general conclusion is that YouTube, and more generally
the CDNs have many ways to control the content delivery.

1) By customizing the URL of the video server, which is
done by the YouTube front-end servers (Sect. V-A)

2) By resolving the URL of the video server to a different
IP address, which is done by the YouTube authoritative
DNS server

3) By using HTTP redirect messages at the video server
level, which is done at the cache site level (Sect. VI-B).

Note that the HTTP redirect messages usually occur when
the server decides not to serve the request (e.g. when the
server is too loaded). Thus, this is a decentralized process.

2which is much more complex than raw throughput measure

On the contrary, the URL customization and the specific DNS
resolution can be controlled centrally. Therefore, we would
like to emphasize that YouTube has a large number of knobs to
decide what server and what AS a particular video gets served
from. From our data, it seems that the primary goals of the
video delivery is to use best paths and to spare infrastructure.

Moreover, as the routing modifications are usually not
advertised by YouTube to ISPs, this may lead to sub-optimal
infrastructure usage. A collaboration between YouTube (and
more generally the CDNs) and ISPs is therefore needed to
use the Internet at its full potential and for the benefit of end-
users.

From an operational point of view, we have shown that
a network metric (download throughput) and a minimal DPI
engine (to retrieve the video encoding rate) can lead to
satisfactory results in evaluating the video QoE of HTTP
video streaming. This can be efficiently used to monitor the
perceived quality of a large number of clients from a central
point.
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