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Abstract—The routing policy Size Interval Task Assignment
(SITA) isolates small arrivals from large arrivals, while choosing
intervals to balance the workload of each server. It works well for
highly variable arrivals, but the isolation can cause server idle-
ness. To improve this, we suggest a scheme to add pooling to these
SITA-like systems, which can result in better performance. We
propose a routing policy, SITA-JSQ, which chooses a proportion
of the dedicated arrivals, originally allocated by the SITA policy
with equal loads, as flexible arrivals allocated by a JSQ policy
between adjacent servers. Under heavy traffic and Complete
Resource Pooling conditions, the asymptotic Brownian Motion
limit for the unfinished processing times processes is obtained.
Using these limits, we show that SITA-JSQ gives asymptotically
better performance with respect to unfinished processing times
than SITA. Through simulation, we also demonstrate significant
reductions in mean waiting times. Finally, we compare our
approach to cycle stealing from idle servers.

I. INTRODUCTION

In distributed service system design, the job assignment
policy (the policy to route arrivals when they arrive) is one
of the most significant performance factors. For many of
today’s distributed web service systems and content delivery
systems, arrivals have highly variable processing times, for
example when http requests and large file requests are served
together. As Crovella et al. [1] have shown, a large number
of processing time distributions in the Web exhibit such high
variability. The traditional Join the Shortest Queue (JSQ) job
assignment policy performs poorly for this kind of arrivals
[2], [3] because it may lead to arrivals with small processing
times waiting behind arrivals with very large processing times.
The simulation results provided in [3] show that the Size
Interval Task Assignment policy (SITA), which overcomes
the variability of job sizes simply through routing the ar-
rivals based on their sizes, will provide better performance.
Harchol-Balter et al. [2] carry out extensive experiments on
routing policies including JSQ, Random, Size Interval Task
Assignment (SITA) and Dynamic-Least-Work-Remaining, and
show that the SITA policy is the best choice among them
for heterogeneous arrivals. SITA first defines N − 1 cutoff
points (C1, C2, . . . , CN−1) of the job size distribution for
the system with N servers and routes arrivals according to
Figure 1.

While the static isolation of the SITA policy provides better
performance than non-isolating ones like JSQ, it also causes
server idleness. To improve this, dynamic pooling could be

Fig. 1: SITA assignment Policy

added. In this paper we propose a new routing policy SITA-
JSQ which improves the utilization as well as mean waiting
time.

A. Related Work and Motivations

Basically, there are two trends in choosing the cutoff points
for SITA policies:

1. SITA-E (Size Interval Task Assignment with Equal
loads), where cutoff points are chosen according to (1). This
is proposed by Harchol-Balter et al. [2].∫ C1

L

xf(x)dx = · · · =

∫ U

CN−1

xf(x)dx, (1)

where f(x) is the density function of the processing times, and
L and U are the minimum and maximum processing times,
respectively (see Figure 1).

Analysis of SITA-E systems can be found in both [2] and
[4]. Bachmat and Sarfat [5] give asymptotic formulas for the
mean waiting time and the slowdown of SITA systems with a
Bounded Pareto processing time distribution, where the cutoff
points are determined asymptotically to be optimal. Vesilo [6]
also gives a similar asymptotic analysis for both low load
and high load situations based on the Pollaczek-Khinchine
formula for SITA systems with Bounded Pareto processing
time distribution.

2. SITA-V (Size Interval Task assignment with Variable
Load). Although the SITA-E policy has received lots of atten-
tion, Crovella et al. [7] and Schroeder and Harchol-Balter [8]
suggest it might be better if cutoff points are chosen such that
the loads on the servers are unbalanced. In [7] and [8] systems
with two servers with unbalanced SITA routing policies are
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studied. Suggestions are provided as to how to choose the
optimal cutoff point for the two servers to minimize the
slowdown. Harchol-Balter and Vesilo [9] discuss the criteria
for determining cutoff points for systems with two servers.
When the system becomes large, it is hard to define a set of
optimal cutoff points for the system. Bachmat and Sarfati [5]
derive asymptotic expressions for optimal cutoff points which
are N competitive with respect to minimizing average waiting
time for a system with N servers. However, the authors point
out that the performance for a given system may not match
the asymptotics.

The SITA-E policy balances the long-run workload at each
server. In the short term, the highly variable job sizes can cause
the situation where most of the arrivals are routed to a subset
of the servers while servers for the largest jobs are idle for a
long period of time. Even though SITA-V tends to improve this
problem, it is still a static assignment policy. There is also very
little analytic work on conditions when it will be optimal or to
what degree it is suboptimal. In section III, we will compare
the simulation performance of SITAE-JSQ with SITAV-JSQ,
where the latter chooses cutoff points Ci = (U/L)i/N , where
N is the number of servers. According to [5], such cutoff
points can provide O(U1/N ) normalized average waiting time
E(W )/E(X), where X and W are the processing time and
waiting time, respectively. Based on the simulation results, we
will see that for a bounded Pareto processing time distribution
with 0 < α < 1, this SITA-V will outperform SITA-E and the
SITAV-JSQ policy will slightly outperform SITA-V. However,
for bounded Pareto distribution with 1 < α < 2, our SITA-V
will give very poor performance and SITAV-JSQ can improve
this dramatically. For all 0 < α < 2, SITAE-JSQ can provide
considerable improvement over SITA-E.

There is another way to improve SITA-E: steal cycles
from idle servers, in which arrivals initially assigned to a
busy server are instead routed to an appropriate idle server.
Harchol-Balter et al. [10] analyze cycle stealing and conclude
that beneficiary arrivals may benefit unboundedly from cycle
stealing, regardless of arrival variability, while the impact
to donor arrivals (the arrivals whose cycles can be stolen)
is comparatively small. Harchol-Balter et al. [11] show that
there are situations (when the variance of processing times
is very large) when SITA-E and the cycle stealing policy are
detrimental to performance. In section III, we also compare
the performance of SITAE-JSQ systems with cycle stealing
approaches.

One important assumption for our analysis is complete
resource pooling (CRP), which is first referred to by Harrison
and López in [12]. They study a system with N parallel servers
with m classes of arrivals, where each class has an associated
holding cost. To minimize the cost, they assume the total
overlap of processing capabilities, which leads to a limiting
one dimensional reflected Brownian Motion in heavy traffic.
It gives the intuition that under CRP conditions, the N servers
work like a super server, and there exists an optimal routing
policy to minimize the cumulative cost incurred up to any time
t. In short, the CRP conditions guarantee a one dimensional

Brownian motion limit through assuming the server capacities
can be exchanged or overlap.

B. SITA-JSQ routing policy

First, a set of cutoff points is determined for SITA according
to the processing time distribution, then a sub-interval is
defined around every cutoff point. When a job arrives, if its
size belongs to a flexible routing interval, the queue lengths
of the server it should be allocated to by SITA and a set
of adjacent servers are compared. The shortest queue is then
chosen and the job is assigned to that queue. The detailed
policy is shown in Figure 2. As shown in Figure 2a, SITA-
JSQ2 divides the job size into N intervals for N servers:
[L,C1], (C1, C2], (C2, C3], . . . , (CN−1, U ]. The flexible rout-
ing interval [C1

i , C
2
i ) around cutoff point Ci, (i ∈ [1, N−1])

is determined by a constant proportion p. A proportion p
2 of the

arrivals around cutoff point i are routed to the shortest queue
between queue i and queue i + 1. The rest of the arrivals
in the same size interval i are routed to queue i. SITA-JSQ3
means the flexible arrivals around cutoff point i can compare
the queue length among servers i to i+2. (The last group will
be routed to the shortest queue among servers [N − 2, N ], as
shown in Figure 2b).In a similar manner, a set of policies
SITA-JSQh (h ≤ N ) can be defined.

The pooling should be restricted so that the variance of each
queue will not be increased to an unacceptable degree by the
flexible arrivals. In Section III we study the tradeoff between
adding flexibility and improving waiting times. Furthermore,
a larger range of choices for flexible arrivals means more
overhead in gathering queue lengths.

In this paper three problems are studied: 1. Can SITA-
JSQ outperform SITA? This question is with respect to both
unfinished workload and mean waiting time. Using diffusion
approximations, we prove that SITA-JSQ satisfying a CRP
condition asymptotically minimizes unfinished workload. Un-
fortunately, due to the dependency between queues, one cannot
easily obtain explicit expressions for the mean waiting times
or mean queue length [13]. In this paper we only consider the
waiting time through simulations. 2. What is the appropriate
number of flexible servers? 3. What is the appropriate
proportion of flexible arrivals p?. Is the system performance
sensitive to this choice? We will see below that, somewhat
surprisingly, the performance is not particularly sensitive to
this choice.

II. ASYMPTOTIC LIMITS FOR SITA-JSQ ROUTING POLICY

Model: The system has N servers. Arrivals follow a Poisson
process with rate λ. An arrival is immediately assigned to a
server, and all the servers have the same processing capacity
and process their jobs in first-come-first-served (FCFS) order.
Processing times are known upon arrival. We would first like
to analyze the simplest policy SITA-JSQ2.

As a reminder, the SITA-JSQ2 policy routes arrivals as
follows: divide the job size into N intervals: [L, C1),
[C1, C2), . . . , [CN−1, U ]. Define sets I1 = {1, . . . , N},
I2 = {N + 1, . . . , 2N − 1} and I = I1

⋃
I2. The dedicated
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(a) SITA-JSQ2 routing policy. (b) SITA-JSQ3 routing policy.

Fig. 2: SITA-JSQ routing policies

arrivals are labeled by I1, while the flexible arrivals are
labelled by I2. So there are |I| types of arrivals. Define the
set J = {1, . . . , N} as the set of servers.

Given the processing time density function f(x), and a
constant proportion p, 0 ≤ p ≤ 1 for the flexible routing
intervals, then along with cutoff points calculated according to
equation (1) in SITAE-JSQ2 and according to Ci = (U/L)i/N

in SITAV-JSQ2, flexible routing intervals [C1
i , C

2
i ) (as defined

in Section I-B) are chosen for the JSQ routing policy as
follows: ∫ Ci

C1
i
f(x)dx∫ Ci

Ci−1
f(x)dx

=

∫ C2
i−1

Ci−1
f(x)dx∫ Ci

Ci−1
f(x)dx

= p/2, (2)

where CN = U and C0 = L. The arrival and processing rates
of each arrival type i are given by, respectively: λi = λpi and
µi = pi

Ci+1∫
Ci

xf(x)dx

, where

pi =


∫ C1

i

C2
i−1

f(x)dx i ∈ I1, i 6= 1, N∫ C2

i−N

C1
i−N

f(x)dx, i ∈ I2.
(3)

Based on previous definitions, we use a matrix Φ = (φji )|I|×|J|
to represent the routing policy, where φji is the average rate
at which server j’s time is allocated to type i arrivals. Here,

Φ =

[
Φ1

Φ2

]
(4)

where Φ1 is a diagonal matrix that represents the routing of
arrivals of type I1 and Φ2 is an upper bidiagonal matrix that
represents the corresponding routing of arrivals of type I2. The
entries in Φ should satisfy:

∑
j∈J

µiφ
j
i = λi, i ∈ I∑

i∈I
φji = 1, j ∈ J.

(5)

From (3) and (5), one can obtain the entries in Φ:

φji =



λi
µi
, i ∈ I1, i = j

N−j−1∑
k=0

λi+k

µi+k
+

N−j∑
l=1

λj+l

µj+l
− (N − j), i ∈ I2, j = i−N

j−2∑
k=0

λi−k

µi−k
+

j−1∑
l=1

λj−l

µj−l
− (j − 1), i ∈ I2, j = i−N + 1.

(6)

Every φji in (6) is positive and the system (5) has a unique
solution, for which, according to [14], [15], the Complete
Resource Pooling condition is satisfied.

We will use what is by now standard heavy traffic analysis
for this system. Consider a sequence of systems indexed by n.
According to Reiman [16] and Whitt [17] for a GI/GI/1-FCFS
model, assume the heavy traffic condition,

lim
n→∞

√
n(λ(n)− µ(n)) = c, −∞ < c < +∞. (7)

Here, the arrival rate and processing rate of the nth system
are given by λ(n) and µ(n) respectively. As n→∞, assume
that

λ(n)→ λ, σ2
a(n)→ σ2

a, (8)
µ(n)→ µ, σ2

s(n)→ σ2
s . (9)

Here, σ2
a(n) and σ2

s(n) are the variances of the interarrival
times and processing times, respectively. Let the unfinished
processing times (virtual waiting times) of all arrivals waiting
at time t be U(t), and let the scaled nth process be Ûn(t) =
Un(nt)/

√
n. Then Ûn(t) converges to a reflected Brownian

motion as n→∞,

Ûn(t)
d→ Û = RBM(

c

µ
, λ(σ2

a + σ2
s)), (10)

where d→ denotes weak convergence, or convergence in dis-
tribution.

We are considering a sequence of queueing systems where
only the arrival rate is changing. So we can assume λ = µ,
and

lim
n→∞

λ(n) = λ, lim
n→∞

λ(n)− λ√
n

= c. (11)
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Define bi = cλi/λ so that
∑
i∈I

bi = c, then from (11):

lim
n→∞

√
n(λi(n)− λi) = cλi/λ = bi.

Define Uni,j(t) as the unfinished processing times of type i
arrivals at server j at time t. Define the scaled process to be
Ûni,j(t) =

Un
i,j(nt)√
n

. According to [15], under the heavy traffic
and CRP conditions:∑

j∈J
ξ∗j

∑
i∈I

Ûni,j(t)
d→ RBM(θ, σ2),

where

θ =
∑
i∈I

v∗i bi,

σ2 =
∑
i∈I

(v∗i )2[λ3iσ
2
ai +

∑
j∈J

φjiµ
3
iσ

2
si],

where v∗i is the workload contribution of type i arrivals and
ξ∗j is the workload contribution of server j, and σ2

ai and σ2
si

are the variances of the interarrival time distribution and the
processing time distribution of type i arrivals, respectively.

According to [16], when the CRP condition is satisfied, v∗i
and ξ∗j will be related as follows:

ξ∗j = max
i
µiv
∗
i , j ∈ J, (12)

v∗i = min
j
ξ∗j /µi, i ∈ I. (13)

Proposition 2.1: The asymptotic limit of the total unfin-
ished processing times process in SITA-JSQ2 is optimal (with
respect to the mean) and independent of p, the proportion of
flexible arrivals.

Proof: From (12) and (13), ξ∗j is a constant. One can
easily get v∗i = 1

Nµi
and ξ∗j = 1

N . Substituting these
expressions, we see:

θ =
∑
i∈I

v∗i bi =
c

N

∫ U

L

xf(x)dx. (14)

As we have discussed, the arrival rate λi and processing
rate µi for arrival type i satisfy equation (5). According to it,
we can find the variance to be:

σ2 =
∑
i∈I

(v∗i )2[λ3iσ
2
ai +

∑
j∈J

φjiµ
3
iσ

2
si]

=
∑
i∈I

(
λi

N2µ2
i

+ λiσ
2
si)

=
λ

N2

∫ U

L

x2f(x)dx. (15)

Define Ûn =
∑
j∈J

ξ∗j
∑
i∈I

Ûni,j(t). From equations (14) and (15),

the limiting process as n→∞ is independent of p. Also, we
let E[ÛSITA-JSQ2 ] denote the mean of the stationary distribution
of Û . (The stationary distribution exists only if c < 0.) Then

E[ÛSITA-JSQ2 ] =
λ
N2

∫ U
L
x2f(x)dx

2N |c|
∫ U
L
xf(x)dx

.

Obviously E[ÛSITA-JSQ2 ] is also independent of p.
A lower bound on the unfinished processing times is ob-

tained by considering an M/G/1 server working at rate Nµ.
Given the heavy traffic condition lim

n→∞
λ(n)−Nµ(n)√

(n)
= c, one

can easily obtain that the limiting unfinished processing time
process of this M/G/1 system weakly converges to

RBM(
c

Nµ
,

λ

N2

∫ U

L

x2f(x)dx),

which is the same as for SITA-JSQ2.
Somewhat surprisingly, according to Proposition 2.1, no

matter how many flexible arrivals we add, the limiting pro-
cess will not change. Furthermore, it shows that SITA-JSQ2
provides optimal unfinished workload under heavy traffic.
However, we still need to verify whether SITA-JSQ2 can
outperform SITA with respect to unfinished processing times.

Proposition 2.2: For all processing time distributions with
finite mean and variance, under heavy traffic conditions,
E[ÛSITA-JSQ2 ] < E[ÛSITA ].

Proof: The SITA system with N servers works as N
M/G/1 systems. The arrival rate at server i is given by: λi =

λ
∫ Ci

Ci−1
f(x)dx, and the heavy traffic condition (11) reduces

to a heavy traffic condition for each server i:

lim
n→∞

λi(n)− λi√
n

= c

∫ Ci

Ci−1

f(x)dx.

Then Ûn(t) converges to a reflected Brownian motion given
by (10) as n→∞.

In our model, we first define Uni (t) as the unfinished
processing times at server i at time t. Under the heavy traffic
condition, according to (10) we have the scaled process Ûni (t)
weakly converges to

Ûni (t)
d→ Ûi = RBM(c

∫ Ci

Ci−1

xf(x)dx, (
1

λi
+ λiσ

2
si)).

Then the total unfinished workload of the system ÛSITA is

equal to
N∑
i=1

Ûi. It weakly converges to

RBM(

N∑
i=1

ci
µi
,

N∑
i=1

(
1

λi
+ λiσ

2
si))

= RBM(c

∫ U

L

xf(x)dx, λ

∫ U

L

x2f(x)dx). (16)

Denote the mean and variance of the limiting unfinished
processing times process for SITA-JSQ2 as θSITA-JSQ2 and
σ2

SITA-JSQ2
, respectively, while the corresponding values for SITA

are θSITA and σ2
SITA

.
From (14) and (16), obviously θSITA-JSQ2 = θSITA/N and
σ2

SITA-JSQ2
= σ2

SITA
/N2. Then E[ÛSITA ] will be

λ
∫ U
L
x2f(x)dx

2|c|
∫ U
L
xf(x)dx

= NE[ÛSITA-JSQ2 ],

for N > 1, obviously E[ÛSITA ] > E[ÛSITA-JSQ2 ].
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Under heavy traffic conditions, we have shown that SITA-
JSQ2 performs better with respect to unfinished processing
times than SITA, without any assumption on the processing
time distribution (other than it having finite mean and vari-
ance).

We should also verify whether SITA-JSQ2 will perform
better with respect to mean waiting time. However, because of
the dependency between queues, it is hard to find an explicit
approximation for the mean waiting time from the unfinished
processing time process. This issue is still under investigation.
A conjecture is that SITA-JSQ2 still performs well with respect
to mean waiting time because it still isolates small arrivals
from large arrivals. In particular, the mean waiting times may
be sensitive to p, whereas the unfinished processing times are
not. There may be processing time distributions where any
SITA-like policy may not perform well (i.e. when processing
time distributions have low variance). In this case, both SITA
and SITA-JSQ2 would perform poorly against a policy such
as JSQ. In order to investigate this in more detail, we carry
out a set of simulations in the next section.

From the proof of Proposition 2.1, one can see that any
policy adding complete resource pooling to SITA will achieve
the asymptotic optimization of unfinished processing times.
Our next step is to check whether SITA-JSQh for any h < N
will satisfy the CRP condition. Unfortunately, this is not the
case. We consider SITA-JSQ3, but the insight below holds for
larger values of h.

As for SITA-JSQ2, we can define the routing matrix

Φ′(φji ) =

[
Φ′1

Φ′2

]
where Φ′1 = Φ1 as in (4), and Φ′2 is

a matrix with entries on the diagonal and next two upper
diagonals. Then the average service rate φji server j allocates
to type i arrivals should satisfy the following system of
equations:

φ1
N+1

+ φ2
N+1

+ φ3
N+1

=
λ
N+1

µ
N+1

,

...

φN−2

2N−2
+ φN−1

2N−2
+ φN

2N−2
=

λ
2N−2

µ
2N−2

,

φN−2

2N−1
+ φN−1

2N−1
+ φN

2N−1
=

λ
2N−1

µ
2N−1

,

φ1
1

+ φ1
N+1

= 1,

φ2
2

+ φ2
N+1

+ φ2
N+2

+ φ2
N+3

= 1,

...

φN−1

N−1
+ φN−1

2N−3
+ φN−1

2N−2
+ φN−1

2N−1
= 1,

φ
N

N
+ φN

2N−2
+ φN

2N−1
= 1.

In total there are 3N − 3 variables and 2N − 1 equations.
(The proportions of dedicated arrivals of type j are known to
be λj

µj
, j ∈ [1, N ]). This means the solution is not unique.

One can also deduce this from the routing map: the map
is connected but has cycles, whereas the CRP condition
requires a connected tree. Thus, SITA-JSQ3 with this routing
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Fig. 3: CVs for different Bounded Pareto distributions

configuration could not be analyzed through the same method.
But obviously any modification to SITA-JSQh satisfying the
CRP condition will produce a unique solution for the system
of routing equations thus optimizing the unfinished workload.

Note that it is not obvious that moving to JSQ3 from
JSQ2 will necessarily improve system performance. While
JSQ3 should reduce short-term server idleness, it does create
situations where a greater range of job sizes are combined at
a particular queue.

In this section, we have provided a partial analysis of our
proposed policies. In the next section, we continue our studies
using simulation.

III. SIMULATION RESULTS

For all results in this section, event-driven simulations are
written in C++ with approximately 106 arrivals. Each result
has a 95% confidence interval.

A. Effect of Proportion of Flexible Arrivals

In the previous section, we proved that SITA-JSQ2 provides
lower unfinished processing times than SITA in heavy traffic.
Moreover, the asymptotic limits are independent of p, the
proportion of flexible arrivals. A set of simulations are done
to check whether this insight will still hold for mean waiting
time performance. To get highly variable arrivals, we choose a
number of processing time distributions that follow a Bounded
Pareto distribution with density function

f(x) =
αLαx−α−1

1− (LU )α
, 0 < α < 2,

where L and U are the lower and upper bounds of the
processing times, respectively. Figure 3 gives some rough
ideas about how α affects the variability of Bounded Pareto
distributions. According to [3], in most application cases, if the
task size can be fit to a Bounded Pareto distribution, α is close
to 1 (and no larger than 2). Here we consider three different
α: 1.22 and 0.9 (high variability), and 1.9 (low variability).
The effect of changing α will be discussed in section III-D.

First, dedicated arrivals are chosen according to SITA-E,
and the workload of all 20 servers is set to 0.96, 0.9 or 0.5
to represent different load levels. Through changing p, the
proportion of flexible arrivals is changed. When p = 0, the
routing policy reduces to SITA-E.

As shown in Figure 4a, when ρ = 0.96 (heavy traffic), the
average waiting time of the system improves approximately
30% to 40% for all of the Bounded Pareto distributions
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by adding only 10 percent flexible arrivals. The subsequent
improvement of average waiting time drops to around 20%
for 20 percent flexible arrivals. As p increases, the rate of
improvement decreases. This is consistent with the insight
of the previous section: 1. The SITAE-JSQ2 policy will
provide a large improvement over SITA-E in mean waiting
time independent of the parameters of the Bounded Pareto
distribution. 2. The SITAE-JSQ2 policy is not sensitive to the
proportion of flexible arrivals. In Figure 4b when ρ = 0.9,
making twenty percent of arrivals flexible will provide 30% to
40% relative improvement, and then the rate of improvement
decreases as p increases. Figure 4c shows that SITAE-JSQ2
does not give much improvement for light traffic, ρ = 0.5. This
is reasonable because under light traffic flexible arrivals will
often see an idle server. Thus the proportion of flexible arrivals
will not affect the performance. This is also demonstrated in
Figure 4c.

When adding pooling to SITA-V, the problem becomes
complicated. The choice of cutoff points will significantly
affect the performance. As discussed in the Introduction,
several papers ( [2], [18]–[20]) consider finding cutoff points
heuristically. However this is not what we focus on in this
paper. A simple choice of cutoff points (Ci = U i/h) is
used and according to [5], it is asymptotically N -optimal for
normalized waiting time. Based on this version of SITA-V, we
will study whether and how adding pooling will improve it.

Figure 5 shows several sets of simulation results for SITAV-
JSQ2. In Figure 5a, SITA-V based on our choice of cutoff
points does not give reasonable performance for arrivals with
α > 1, while it performs very well when α < 1. In all
cases, adding pooling to it will improve the performance: when
α = 1.22, the improvement is around 20% to 30% when
p = 1. However, when α = 1.22, when the load is lower,
adding pooling will dramatically improve the performance (see
Figure 5b). When ρ = 0.7, the improvement is around 50%
by changing all arrivals to flexible arrivals. When ρ is around
0.4 through 0.6, the curve drops dramatically for some p. For
example, the average waiting time drops from 104 to 14.79
when ρ = 0.55. A similar effect can be seen in Figure 5c. This
shows a very important idea: adding pooling can compensate
for a poor choice of cutoff points. In practice, it can be very
difficult to estimate the processing time distribution. As a
result, for example SITA-E or SITA-V can perform far from
expected when a Bounded Pareto distribution is used with
an error in the estimate of α. SITA-JSQ will increase the
robustness of routing polices. On the other hand, we can see
in Figure 5c that when SITA-V performs well by itself, adding
pooling will improve it but the degree of improvement is not
large.

B. Effect of Increasing the Range of Flexible Servers

Even though we were unable to determine the asymptotic
limits for SITA-JSQh for h > 2, we still would like to
check whether involving more servers into the JSQ group
results in significant benefits. One conjecture is there will
be some point at which adding flexibility actually leads to

worse performance. If arrivals are allowed to join a queue
where the processing times of dedicated arrivals are very
different, the variance at the queue will increase and this might
offset the benefits brought by pooling. Figure 6 and Figure
7 give evidence for the conjecture. For a processing time
distribution with heavier tail (α = 1.1), this point happens
later. For lighter tailed processing times (α = 1.5), increasing
the range of flexible arrivals to more than 2 does not show too
much improvement. In general, from the simulation results,
going beyond SITAE-JSQ5 is not advisable, while the most
improvement is made simply by using SITAE-JSQ2.

C. Effect of System Size

For the same processing time distribution, more servers
means the size intervals of SITA-E will become narrower. We
perform a set of simulations to check whether different server
numbers require different configurations. Figure 8 shows the
corresponding average waiting times. We keep the average
load of each server fixed, so the arrival rate increases pro-
portionally with the number of servers.

Both the average waiting time of SITAE-JSQ2 and SITAE-
JSQ3 drop dramatically as the number of servers increases
from 3 to 15, and remain relatively steady beyond that. This
is reasonable because when the number of servers is small,
the variance of sizes in each queue is very high, thus adding
pooling will not perform very well.

D. Effect of variability

In this section, we study the impact of processing time
variance on performance. The value of α determines the shape
of the tail of the distribution. The smaller α is the heavier
the tail. We use CV (Coefficient of Variation) to present the
variability of distributions. In terms of CV, when α varies from
1.1 to 1.9, CV of the Bounded Pareto distribution changes from
734.7 to 13.61 with U = 104 and from 3.727× 104 to 26.83
with U = 106 (As shown in Figure 3). The simulation results
for a system with 20 servers are shown in Figure 9. As in
the previous discussion, SITAE-JSQ still outperforms SITA-E
in every case, especially for arrivals with α close to 1 (heavy
tail). For α around 2 (very light tail), the improvement stops.
However, for arrivals with α close to 2, one should think about
whether isolation is a good idea. Typically, SITA-like routing
policies are designed for highly variable arrivals. As we can
see from Figure 9, for α from 0.8 to 1.5, the curve drops
significantly.

E. Cycle Stealing vs. SITAE-JSQ2

A common way to realize pooling for SITA-E systems is
to steal cycles from idle servers. In [2], Harchol-Balter et al.
analyze the performance of cycle stealing in models where
arrivals to servers processing small jobs will steal cycles from
donor servers processing large jobs. One version of cycle
stealing has an arrival randomly choose an idle server. If there
is no idle server, follow SITA-E. However, in heavy traffic,
it is rare that a server is idle. Thus there is not too much
pooling. However, adding a flexible arrival to an empty queue
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guarantees immediate service, while in SITAE-JSQ arrivals
might still have to wait in a long queue. Another concern is

that pooling arrivals with very different sizes will unacceptably
increase the variability at each queue. So we also consider a
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version of cycle stealing from only adjacent idle servers. To
compare performance of these systems, we carry out a set of

simulations for a 20 server system having the same arrival
rate and processing time distribution as the bounded Pareto
distribution with L = 1, U = 104, α = 1.22. As shown in
Figure 10, under the setting L = 1, U = 104 and α = 1.22,
cycle stealing from a random server cannot beat SITAE-JSQ
for any value of utilization ρ. This could be due to the fact
that either only idle servers are considered, or that arrivals are
randomly assigned (or both). The impact of the latter choice
is lessened when cycles can only be stolen from adjacent
servers - when the utilization is relatively small (0.5, 0.6), the
performance of SITAE-JSQ and cycle stealing from adjacent
idle servers is quite close. This is reasonable because when
the servers are less busy, the queue with shorter length may
actually be idle. However, when the utilization becomes high,
SITAE-JSQ outperforms it because the probability of idleness
is low. Figure 10a compares the performance of SITAE-JSQ
and cycle stealing from adjacent idle servers with varying
proportion of flexible arrivals. The latter still cannot beat
SITAE-JSQ no matter how many flexible arrivals are chosen.
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Fig. 10: SITAE-JSQ2 vs. Cycle stealing

This might be because when ρ = 0.96, there would be very
few adjacent servers that are idle. So cycle stealing works
almost like SITA-E.

It is hard to analyze the system with multiple donor servers.
We can not guarantee that λi for every i ∈ I2 is positive,
thus complete resource pooling is not guaranteed for these
scenarios. A deeper analytic comparison of SITAE-JSQ2 and
cycle stealing is left for future work.

IV. CONCLUSIONS

In order to add pooling to SITA-like queueing systems to
achieve simultaneously low mean waiting time and high server
utilization, we propose a new routing method: SITA-JSQ.
Under heavy traffic, we proved that the unfinished processing
times process for the SITA-JSQ2 routing policy is minimized
and does not depend on the proportion of flexible arrivals.
Simulation results showed that the insights developed for
unfinished processing times carry over to waiting times. SITA-
JSQ can provide significant improvement in mean waiting
time by adding a small proportion of flexible arrivals as well
as compensating for errors in estimating the processing time
distribution.
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